Schemes of CM type
Sbornik. Mathematics, Tome 26 (1975) no. 1, pp. 105-136 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A theory analogous to the theory of complex multiplication of Abelian varieties is constructed. The principal technical tools are Tate groups, which are closely related to the $p$-divisible groups introduced by Tate. Bibliography: 14 titles.
@article{SM_1975_26_1_a5,
     author = {A. I. Ovseevich},
     title = {Schemes of {CM} type},
     journal = {Sbornik. Mathematics},
     pages = {105--136},
     year = {1975},
     volume = {26},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1975_26_1_a5/}
}
TY  - JOUR
AU  - A. I. Ovseevich
TI  - Schemes of CM type
JO  - Sbornik. Mathematics
PY  - 1975
SP  - 105
EP  - 136
VL  - 26
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1975_26_1_a5/
LA  - en
ID  - SM_1975_26_1_a5
ER  - 
%0 Journal Article
%A A. I. Ovseevich
%T Schemes of CM type
%J Sbornik. Mathematics
%D 1975
%P 105-136
%V 26
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1975_26_1_a5/
%G en
%F SM_1975_26_1_a5
A. I. Ovseevich. Schemes of CM type. Sbornik. Mathematics, Tome 26 (1975) no. 1, pp. 105-136. http://geodesic.mathdoc.fr/item/SM_1975_26_1_a5/

[1] N. Burbaki, Algebra, izd-vo «Nauka», Moskva, 1966 | MR

[2] A. Veil, Osnovy teorii chisel, izd-vo «Mir», Moskva, 1972 | MR

[3] P. Delin, “O $l$-adicheskikh predstavleniyakh, svyazannykh s modulyarnymi formami”, Matematika, 18:2 (1974), 110–122

[4] T. Giraud, “Remarque sur une formule de Shimura - Taniama”, Invent. math., 5 (1968), 231–236 | DOI | MR | Zbl

[5] W. Casselman, “On representations of $\mathrm{GL}_2$ and the arithmetic of modular curves. Modular Functions of one Variable, II”, Lect. Notes Math., 349 (1973), 107–142 | DOI | MR

[6] D. Mamford, Abelevy mnogoobraziya, izd-vo «Mir», Moskva, 1971

[7] I. I. Piateckii-Shapiro, “Zeta-functions of modular curves. Modular Functions of one Variable, II”, Lect. Notes Math., 349 (1973), 317–360 | DOI | MR

[8] I. I. Pyatetskii-Shapiro, I. R. Shafarevich, “Teoriya Galua i uniformizatsiya”, Izv. AN SSSR, seriya matem., 30 (1966), 671–704

[9] Zh.-P. Serr, Abelevy $\zeta$-adicheskie predstavleniya i ellipticheskie krivye, izd-vo «Mir», Moskva, 1973

[10] Zh.-P. Serr, “Lokalnye mnozhiteli $\zeta$-funktsii”, Matematika, 15:1 (1971), 3–13 | Zbl

[11] Zh.-P. Serr, Dzh. Teit, “Khoroshaya reduktsiya abelevykh mnogoobrazii”, Matematika, 15:5 (1971), 140–165 | Zbl

[12] Dzh. Teit, “$p$-delimye gruppy”, Matematika, 13:2 (1969), 3–25 | MR

[13] Dzh. Teit, “Klassy izogenii abelevykh mnogoobrazii”, Matematika, 14:6 (1970), 129–137

[14] G. Shimura, Y. Taniama, “Complex multiplication of abelian varieties and its applications to number theory”, Publ. Math. Soc. Japan, 6 (1961) | MR | Zbl