On~global solvability of nonlinear parabolic boundary-value problems
Sbornik. Mathematics, Tome 26 (1975) no. 1, pp. 89-104

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper one considers nonlinear parabolic boundary-value problems of a general form. It is known that the solution of such problems can go to infinity in a finite interval of time. One shows that this effect is in a certain sense of a finite-dimensional character. Namely, one shows that if the solution is considered on the segment $[0,T]$, while the right-hand sides are bounded in the norm by a constant $R$ and satisfy a finite number of conditions, then the problem admits a solution which is smooth for $0\leqslant t\leqslant T$ (the number of conditions depends on $R$ and $T$). Bibliography: 11 titles.
@article{SM_1975_26_1_a4,
     author = {A. V. Babin},
     title = {On~global solvability of nonlinear parabolic boundary-value problems},
     journal = {Sbornik. Mathematics},
     pages = {89--104},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {1975},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1975_26_1_a4/}
}
TY  - JOUR
AU  - A. V. Babin
TI  - On~global solvability of nonlinear parabolic boundary-value problems
JO  - Sbornik. Mathematics
PY  - 1975
SP  - 89
EP  - 104
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1975_26_1_a4/
LA  - en
ID  - SM_1975_26_1_a4
ER  - 
%0 Journal Article
%A A. V. Babin
%T On~global solvability of nonlinear parabolic boundary-value problems
%J Sbornik. Mathematics
%D 1975
%P 89-104
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1975_26_1_a4/
%G en
%F SM_1975_26_1_a4
A. V. Babin. On~global solvability of nonlinear parabolic boundary-value problems. Sbornik. Mathematics, Tome 26 (1975) no. 1, pp. 89-104. http://geodesic.mathdoc.fr/item/SM_1975_26_1_a4/