On global solvability of nonlinear parabolic boundary-value problems
Sbornik. Mathematics, Tome 26 (1975) no. 1, pp. 89-104 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper one considers nonlinear parabolic boundary-value problems of a general form. It is known that the solution of such problems can go to infinity in a finite interval of time. One shows that this effect is in a certain sense of a finite-dimensional character. Namely, one shows that if the solution is considered on the segment $[0,T]$, while the right-hand sides are bounded in the norm by a constant $R$ and satisfy a finite number of conditions, then the problem admits a solution which is smooth for $0\leqslant t\leqslant T$ (the number of conditions depends on $R$ and $T$). Bibliography: 11 titles.
@article{SM_1975_26_1_a4,
     author = {A. V. Babin},
     title = {On~global solvability of nonlinear parabolic boundary-value problems},
     journal = {Sbornik. Mathematics},
     pages = {89--104},
     year = {1975},
     volume = {26},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1975_26_1_a4/}
}
TY  - JOUR
AU  - A. V. Babin
TI  - On global solvability of nonlinear parabolic boundary-value problems
JO  - Sbornik. Mathematics
PY  - 1975
SP  - 89
EP  - 104
VL  - 26
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1975_26_1_a4/
LA  - en
ID  - SM_1975_26_1_a4
ER  - 
%0 Journal Article
%A A. V. Babin
%T On global solvability of nonlinear parabolic boundary-value problems
%J Sbornik. Mathematics
%D 1975
%P 89-104
%V 26
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1975_26_1_a4/
%G en
%F SM_1975_26_1_a4
A. V. Babin. On global solvability of nonlinear parabolic boundary-value problems. Sbornik. Mathematics, Tome 26 (1975) no. 1, pp. 89-104. http://geodesic.mathdoc.fr/item/SM_1975_26_1_a4/

[1] M. S. Agranovich, M. I. Vishik, “Ellipticheskie zadachi s parametrom i parabolicheskie zadachi obschego vida”, Uspekhi matem. nauk, XIX:3 (117) (1964), 53–161

[2] A. V. Babin, “Konechnomernost yadra i koyadra kvazilineinykh ellipticheskikh otobrazhenii”, Matem. sb., 93 (135) (1974), 422–450 | MR | Zbl

[3] S. M. Nikolskii, Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, izd-vo «Nauka», Moskva, 1969 | MR

[4] V. A. Solonnikov, “O kraevykh zadachakh dlya lineinykh parabolicheskikh sistem differentsialnykh uravnenii obschego vida”, Trudy Matem. in-ta im. V. A. Steklova, LXXXIII, 1965, 3–163 | MR

[5] R. Pale, Seminar po teoreme Ati-Zingera ob indekse, izd-vo «Mir», Moskva, 1970 | MR

[6] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, izd-vo «Nauka», Moskva, 1967

[7] O. A. Oleinik, S. N. Kruzhkov, “Kvazilineinye parabolicheskie uravneniya vtorogo poryadka so mnogimi nezavisimymi peremennymi”, Uspekhi matem. nauk, XVI:5 (101) (1961), 115–155 | MR

[8] A. F. Filippov, “Ob usloviyakh suschestvovaniya resheniya kvazilineinogo parabolicheskogo uravneniya”, DAN SSSR, 141:3 (1961), 568–570 | MR | Zbl

[9] V. A. Solonnikov, “Ob otsenkakh v $L^p$-reshenii ellipticheskikh i parabolicheskikh sistem”, Trudy Matem. in-ta im. V. A. Steklova, CII (1966), 137–160

[10] A. Friedman, “Mildly nonlinear parabolic equations with application to flow of gases through porous media”, Arch. Rat. Mech and Analysis, 5:3 (1960), 238–248 | DOI | MR | Zbl

[11] H. Fujita, “On some nonexistence and nonuniqueness theorems for nonlinear parabolic equations”, Proc. Symp. in pure math., part 1, XVIII, Amer. Math. Soc., 1970, 105–113 | MR