Calculating losses in scattering problems
Sbornik. Mathematics, Tome 26 (1975) no. 1, pp. 71-87 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this article we solve the problem about the calculation of losses in a scattering problem with “Lax” and “non-Lax” channels. For the initial scattering matrix we consider the scattering matrix of the basic operator of the problem with respect to a simple unperturbed operator, which acts in a distinguished subspace (a Lax channel) that is the orthogonal sum of the incoming and outgoing subspaces. It turns out that this scattering matrix is nonunitary when the basic space contains other channels besides the distinguished one, including non-Lax channels. The concept of losses is connected with the fact that the scattering matrix is nonunitary. We calculate the losses by constructing in the orthogonal complement of a Lax channel a new selfadjoint operator, which with the original unperturbed operator forms a modified unperturbed operator. The latter has a unitary scattering matrix with respect to the basic operator of the problem. We explain the significance of the elements of the new scattering matrix that include the original matrix. Bibliography: 9 titles.
@article{SM_1975_26_1_a3,
     author = {B. S. Pavlov},
     title = {Calculating losses in scattering problems},
     journal = {Sbornik. Mathematics},
     pages = {71--87},
     year = {1975},
     volume = {26},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1975_26_1_a3/}
}
TY  - JOUR
AU  - B. S. Pavlov
TI  - Calculating losses in scattering problems
JO  - Sbornik. Mathematics
PY  - 1975
SP  - 71
EP  - 87
VL  - 26
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1975_26_1_a3/
LA  - en
ID  - SM_1975_26_1_a3
ER  - 
%0 Journal Article
%A B. S. Pavlov
%T Calculating losses in scattering problems
%J Sbornik. Mathematics
%D 1975
%P 71-87
%V 26
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1975_26_1_a3/
%G en
%F SM_1975_26_1_a3
B. S. Pavlov. Calculating losses in scattering problems. Sbornik. Mathematics, Tome 26 (1975) no. 1, pp. 71-87. http://geodesic.mathdoc.fr/item/SM_1975_26_1_a3/

[1] M. Sh. Birman, A. L. Belopolskii, “Suschestvovanie volnovykh operatorov v teorii rasseyaniya dlya pary prostranstv”, Izv. AN SSSR, seriya matem., 32 (1968), 1162–1175 | MR | Zbl

[2] V. M. Adamyan, D. Z. Arov, “Ob unitarnykh stsepleniyakh poluunitarnykh operatorov”, Matem. issledovaniya, 1:2 (1966), 3–64 | MR

[3] D. Z. Arov, “Teoriya rasseyaniya s poteryami”, Funkts. analiz, 8:4 (1974), 5–22 | MR | Zbl

[4] B. S. Pavlov, “Ob odnomernom rasseyanii ploskikh voln na proizvolnom potentsiale”, Teor. i matem. fizika, 16:1 (1973), 105–115 | Zbl

[5] B. S. Pavlov, “O nepreryvnom spektre rezonansov na nefizicheskom liste”, DAN SSSR, 206:2 (1972), 1301–1304 | MR | Zbl

[6] B. Sekefalvi-Nad, Ch. Foiash, Garmonicheskii analiz operatorov v gilbertovom prostranstve, izd-vo «Mir», Moskva, 1970 | MR

[7] B. S. Pavlov, “Ob usloviyakh otdelimosti spektralnykh komponent dissipativnogo operatora”, Izv. AN SSSR, seriya matem., 39 (1975), 123–148 | MR | Zbl

[8] B. S. Pavlov, “K spektralnomu analizu dissipativnykh operatorov”, DAN SSSR, 212:2 (1973), 298–301 | MR | Zbl

[9] M. Sh. Birman, S. B. Entina, “Statsionarnyi podkhod v abstraktnoi teorii rasseyaniya”, Izv. AN SSSR, seriya matem., 31 (1967), 401–430 | MR | Zbl