Algebraic automorphisms and $PI$-algebras
Sbornik. Mathematics, Tome 26 (1975) no. 1, pp. 55-69
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper is concerned with associative algebras over a field of characteristic zero which possess a $d$-regular algebraic automorphism. (An automorphism is called $d$-regular if the subalgebra of fixed elements satisfies an identity of degree $d$.) It is shown that if an algebra admits a $d$-regular algebraic automorphism such that no root of unity is a multiple root of its minimum polynomial, then it is a $PI$-algebra.
Bibliography: 8 titles.
@article{SM_1975_26_1_a2,
author = {V. E. Barbaumov},
title = {Algebraic automorphisms and $PI$-algebras},
journal = {Sbornik. Mathematics},
pages = {55--69},
publisher = {mathdoc},
volume = {26},
number = {1},
year = {1975},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1975_26_1_a2/}
}
V. E. Barbaumov. Algebraic automorphisms and $PI$-algebras. Sbornik. Mathematics, Tome 26 (1975) no. 1, pp. 55-69. http://geodesic.mathdoc.fr/item/SM_1975_26_1_a2/