Algebraic automorphisms and $PI$-algebras
Sbornik. Mathematics, Tome 26 (1975) no. 1, pp. 55-69

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is concerned with associative algebras over a field of characteristic zero which possess a $d$-regular algebraic automorphism. (An automorphism is called $d$-regular if the subalgebra of fixed elements satisfies an identity of degree $d$.) It is shown that if an algebra admits a $d$-regular algebraic automorphism such that no root of unity is a multiple root of its minimum polynomial, then it is a $PI$-algebra. Bibliography: 8 titles.
@article{SM_1975_26_1_a2,
     author = {V. E. Barbaumov},
     title = {Algebraic automorphisms and $PI$-algebras},
     journal = {Sbornik. Mathematics},
     pages = {55--69},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {1975},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1975_26_1_a2/}
}
TY  - JOUR
AU  - V. E. Barbaumov
TI  - Algebraic automorphisms and $PI$-algebras
JO  - Sbornik. Mathematics
PY  - 1975
SP  - 55
EP  - 69
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1975_26_1_a2/
LA  - en
ID  - SM_1975_26_1_a2
ER  - 
%0 Journal Article
%A V. E. Barbaumov
%T Algebraic automorphisms and $PI$-algebras
%J Sbornik. Mathematics
%D 1975
%P 55-69
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1975_26_1_a2/
%G en
%F SM_1975_26_1_a2
V. E. Barbaumov. Algebraic automorphisms and $PI$-algebras. Sbornik. Mathematics, Tome 26 (1975) no. 1, pp. 55-69. http://geodesic.mathdoc.fr/item/SM_1975_26_1_a2/