Integral equations on the half-line with difference kernels and nonlinear functional equatons
Sbornik. Mathematics, Tome 26 (1975) no. 1, pp. 31-54 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we present a new approach to the solution of scalar and operator equations of the form \begin{equation*} f(x)=g(x)+\int_0^\infty T(x-t)f(t)\,dt. \tag{A} \end{equation*} We derive and study some new functional equations, occupying an intermediate position between the equation (A) and the Ambarcumyan equation. This approach leads to a very simple way of deriving and generalizing Ambarcumyan's equations. Bibliography: 18 titles.
@article{SM_1975_26_1_a1,
     author = {N. B. Engibaryan and A. A. Arutyunyan},
     title = {Integral equations on the half-line with difference kernels and nonlinear functional equatons},
     journal = {Sbornik. Mathematics},
     pages = {31--54},
     year = {1975},
     volume = {26},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1975_26_1_a1/}
}
TY  - JOUR
AU  - N. B. Engibaryan
AU  - A. A. Arutyunyan
TI  - Integral equations on the half-line with difference kernels and nonlinear functional equatons
JO  - Sbornik. Mathematics
PY  - 1975
SP  - 31
EP  - 54
VL  - 26
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1975_26_1_a1/
LA  - en
ID  - SM_1975_26_1_a1
ER  - 
%0 Journal Article
%A N. B. Engibaryan
%A A. A. Arutyunyan
%T Integral equations on the half-line with difference kernels and nonlinear functional equatons
%J Sbornik. Mathematics
%D 1975
%P 31-54
%V 26
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1975_26_1_a1/
%G en
%F SM_1975_26_1_a1
N. B. Engibaryan; A. A. Arutyunyan. Integral equations on the half-line with difference kernels and nonlinear functional equatons. Sbornik. Mathematics, Tome 26 (1975) no. 1, pp. 31-54. http://geodesic.mathdoc.fr/item/SM_1975_26_1_a1/

[1] M. G. Krein, “Integralnye uravneniya na polupryamoi s yadrami, zavisyaschimi ot raznosti argumentov”, Uspekhi matem. nauk, XIII:5(83) (1958), 3–120 | MR

[2] I. Ts. Gokhberg, M. G. Krein, “Sistemy integralnykh uravnenii na polupryamoi s yadrami, zavisyaschimi ot raznosti argumentov”, Uspekhi matem. nauk, XIII:2(80) (1958), 3–72

[3] V. A. Ambartsumyan, Nauchnye trudy, t. 1, Erevan, 1960

[4] V. V. Sobolev, Perenos luchistoi energii, Moskva, 1956 | MR

[5] N. B. Engibaryan, “Ob integralnykh uravneniyakh na polupryamoi s raznostnymi yadrami”, DAN ArmSSR, 54:3 (1972), 129–133 | Zbl

[6] N. B. Engibaryan, A. G. Nikogosyan, “Nekogerentnoe rasseyanie, III”, Astrofizika, 8:2 (1972), 213–225 | MR

[7] N. B. Engibaryan, A. G. Nikogosyan, “Diffuznoe otrazhenie rezonansnogo izlucheniya ot polubeskonechnoi sredy”, DAN ArmSSR, 54:2 (1972), 91–95

[8] N. B. Engibaryan, A. A. Arutyunyan, “Ob uravneniyakh Vinera-Khopfa”, DAN SSSR, 209:2 (1973), 275–278 | Zbl

[9] N. B. Engibaryan, M. A. Mnatsakanyan, “O faktorizatsii integralnykh operatorov”, DAN SSSR, 206:4 (1972), 792–795 | Zbl

[10] J. W. Busbridge, The mathematics of radiative transfer, Oxford, 1969

[11] V. V. Sobolev, Kurs teoreticheskoi astrofiziki, izd-vo «Nauka», Moskva, 1967

[12] C. Fox, “A solution of Chandrasekhar's integral equation”, Trans. Amer. Math. Soc., 99 (1961), 285–291 | DOI | MR | Zbl

[13] J. W. Busbridge, “On solutions of Chandrasekhar's integral equation”, Trans. Amer. Math. Soc., 105 (1962), 112–117 | DOI | MR | Zbl

[14] E. G. Yanovitskii, “Razlozhenie funktsii Ambartsumyana”, Zvezdy, tumannosti, galaktiki, Erevan, 1969, 21–26

[15] N. B. Engibaryan, M. A. Mnatsakanyan, “K resheniyu diskretnykh uravnenii Vinera-Khopfa”, DAN ArmSSR, 55:2 (1972), 70–74 | Zbl

[16] I. Ts. Gokhberg, M. G. Krein, Teoriya volterrovykh operatorov v gilbertovom prostranstve, izd-vo «Nauka», Moskva, 1967

[17] M. V. Maslennikov, Problema Milna s anizotropnym rasseyaniem, Trudy matem. in-ta im. V. A. Steklova, XCVII, 1968

[18] V. S. Vladimirov, Uravneniya matematicheskoi fiziki, izd-vo «Nauka», Moskva, 1971 | MR