Integral equations on the half-line with difference kernels and nonlinear functional equatons
Sbornik. Mathematics, Tome 26 (1975) no. 1, pp. 31-54
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we present a new approach to the solution of scalar and operator equations of the form
\begin{equation*}
f(x)=g(x)+\int_0^\infty T(x-t)f(t)\,dt.
\tag{A}
\end{equation*} We derive and study some new functional equations, occupying an intermediate position between the equation (A) and the Ambarcumyan equation. This approach leads to a very simple way of deriving and generalizing Ambarcumyan's equations.
Bibliography: 18 titles.
@article{SM_1975_26_1_a1,
author = {N. B. Engibaryan and A. A. Arutyunyan},
title = {Integral equations on the half-line with difference kernels and nonlinear functional equatons},
journal = {Sbornik. Mathematics},
pages = {31--54},
publisher = {mathdoc},
volume = {26},
number = {1},
year = {1975},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1975_26_1_a1/}
}
TY - JOUR AU - N. B. Engibaryan AU - A. A. Arutyunyan TI - Integral equations on the half-line with difference kernels and nonlinear functional equatons JO - Sbornik. Mathematics PY - 1975 SP - 31 EP - 54 VL - 26 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1975_26_1_a1/ LA - en ID - SM_1975_26_1_a1 ER -
N. B. Engibaryan; A. A. Arutyunyan. Integral equations on the half-line with difference kernels and nonlinear functional equatons. Sbornik. Mathematics, Tome 26 (1975) no. 1, pp. 31-54. http://geodesic.mathdoc.fr/item/SM_1975_26_1_a1/