On~the cardinality of compactifications of dyadic spaces
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 25 (1975) no. 4, pp. 579-593
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			It is shown that the supercardinality of a completely regular space $X$ equivalent to a dyadic space is equal to $\exp(\pi wX)$ provided $(\pi wX)^{\omega_0}=\pi wX$, where $\pi wX$ is the $\pi$-weight of $X$. In particular, it follows that the supercardinality of any countable dense subspace of a dyadic compactum of weight $\exp\omega_0$ is equal to $\exp\exp\omega_0$. This solves a problem raised by A. V. Arkhangel'skii on whether there exists a countable completely regular space whose every compactification has a cardinality larger than the continuum.
Bibliography: 12 titles.
			
            
            
            
          
        
      @article{SM_1975_25_4_a8,
     author = {B. A. Efimov},
     title = {On~the cardinality of compactifications of dyadic spaces},
     journal = {Sbornik. Mathematics},
     pages = {579--593},
     publisher = {mathdoc},
     volume = {25},
     number = {4},
     year = {1975},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1975_25_4_a8/}
}
                      
                      
                    B. A. Efimov. On~the cardinality of compactifications of dyadic spaces. Sbornik. Mathematics, Tome 25 (1975) no. 4, pp. 579-593. http://geodesic.mathdoc.fr/item/SM_1975_25_4_a8/
