On the cardinality of compactifications of dyadic spaces
Sbornik. Mathematics, Tome 25 (1975) no. 4, pp. 579-593 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown that the supercardinality of a completely regular space $X$ equivalent to a dyadic space is equal to $\exp(\pi wX)$ provided $(\pi wX)^{\omega_0}=\pi wX$, where $\pi wX$ is the $\pi$-weight of $X$. In particular, it follows that the supercardinality of any countable dense subspace of a dyadic compactum of weight $\exp\omega_0$ is equal to $\exp\exp\omega_0$. This solves a problem raised by A. V. Arkhangel'skii on whether there exists a countable completely regular space whose every compactification has a cardinality larger than the continuum. Bibliography: 12 titles.
@article{SM_1975_25_4_a8,
     author = {B. A. Efimov},
     title = {On~the cardinality of compactifications of dyadic spaces},
     journal = {Sbornik. Mathematics},
     pages = {579--593},
     year = {1975},
     volume = {25},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1975_25_4_a8/}
}
TY  - JOUR
AU  - B. A. Efimov
TI  - On the cardinality of compactifications of dyadic spaces
JO  - Sbornik. Mathematics
PY  - 1975
SP  - 579
EP  - 593
VL  - 25
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1975_25_4_a8/
LA  - en
ID  - SM_1975_25_4_a8
ER  - 
%0 Journal Article
%A B. A. Efimov
%T On the cardinality of compactifications of dyadic spaces
%J Sbornik. Mathematics
%D 1975
%P 579-593
%V 25
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1975_25_4_a8/
%G en
%F SM_1975_25_4_a8
B. A. Efimov. On the cardinality of compactifications of dyadic spaces. Sbornik. Mathematics, Tome 25 (1975) no. 4, pp. 579-593. http://geodesic.mathdoc.fr/item/SM_1975_25_4_a8/

[1] K. Kuratovskii, A. Mostovskii, Teoriya mnozhestv, izd-vo «Mir», Moskva, 1970 | MR

[2] R. Engelking, Outline of general topology, Amsterdam, 1968 | MR

[3] E. Čech, B. Pospisil, “Sur les espases compacts”, Publ. Fac. Sci. Univ. Masaryk, Brno, 258 (1938), 1–14 | Zbl

[4] A. V. Arhangelskij, “A survey of some recent advances in general topology, old and new problems”, Actes Congres Intern. Math., v. 2, Paris, 1970, 19–26 | MR

[5] A. Gleason, “Projectiv topological spaces”, Illinois J. Math., 2:4A (1958), 482–489 | MR | Zbl

[6] V. I. Ponomarev, “O prostranstvakh, soabsolyutnykh s metricheskimi”, Uspekhi matem. nauk, XXI:4 (130) (1966), 101–132 | MR

[7] B. A. Efimov, “Diadicheskie bikompakty”, Trudy Mosk. Matem. ob-va, XIV (1965), 211–247 | MR

[8] B. A. Efimov, “Ekstremalno nesvyaznye bikompakty i absolyuty”, Trudy Mosk. Matem. ob-va, XXIII (1970), 235–276 | MR

[9] B. A. Efimov, “O podprostranstvakh diadicheskikh bikompaktov”, DAN SSSR, 187:1 (1969), 21–24 | MR | Zbl

[10] B. A. Efimov, “On the imbedding of extremally disconnected spaces into bicompacta”, Proc. of the Third Prague Topol. Symp., Prague, 1972, 103–107 | MR | Zbl

[11] B. E. Shapirovskii, “O prostranstvakh s usloviem Suslina i Shanina”, Matem. zametki, 15:2 (1974), 281–288

[12] C. Ryll-Nardczewski, R. Telgarsky, “On the scattered compactification”, Bull. Acad. Polon. sci, ser. Math, 18:5 (1970), 233–234 | MR