On the cycle structure of random permutations
Sbornik. Mathematics, Tome 25 (1975) no. 4, pp. 559-565
Cet article a éte moissonné depuis la source Math-Net.Ru
Suppose a probability distribution is given on the set $S_n$ of all permutations of degree $n$. The authors solve the problem of the joint distribution of the random variables $\alpha_1,\dots,\alpha_s$, where $\alpha_i$ is the number of cycles of length $i$ in a permutation from $S_n$, in a series of cases, when the initial distribution is not uniform on all of $S_n$ but on certain special subsets of it. In these cases it is shown that in the limit as $n\to\infty$ the random variables $\alpha_1,\dots,\alpha_s$ are independent and each of them has a Poisson distribution. Cases in which no joint limit distribution exists are also noted. Bibliography: 4 titles.
@article{SM_1975_25_4_a6,
author = {V. E. Tarakanov and V. P. Chistyakov},
title = {On~the cycle structure of random permutations},
journal = {Sbornik. Mathematics},
pages = {559--565},
year = {1975},
volume = {25},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1975_25_4_a6/}
}
V. E. Tarakanov; V. P. Chistyakov. On the cycle structure of random permutations. Sbornik. Mathematics, Tome 25 (1975) no. 4, pp. 559-565. http://geodesic.mathdoc.fr/item/SM_1975_25_4_a6/
[1] Dzh. Riordan, Vvedenie v kombinatornyi analiz, IL, Moskva, 1963
[2] V. F. Kolchin, V. P. Chistyakov, “Kombinatornye zadachi teorii veroyatnostei”, Itogi nauki i tekhniki. Teoriya veroyatnostei. Matem. stat. Teor. kib., 11, VINITI, M., 1974, 5–45
[3] V. N. Sachkov, “Ob ekstremalnykh tochkakh prostranstva simmetrichnykh stokhasticheskikh matrits”, Matem. sb., 96 (138) (1975), 447–457 | Zbl
[4] M. A. Evgrafov, Asimptoticheskie otsenki i tselye funktsii, Fizmatgiz, Moskva, 1962 | MR