On~the connection of the eigenvalues of~Hecke operators and the Fourier coefficients of eigenfunctions for Siegel's modular forms of genus~$n$
Sbornik. Mathematics, Tome 25 (1975) no. 4, pp. 549-557

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $f(z)=\sum_{N\geqslant0}a(N)\exp2\pi i\sigma(NZ)$ be Siegel's modular form of genus $n$ which is an eigenfunction for all operators in the $p$-component of a Hecke ring; in particular, $T_{p^\delta}f(Z)=\lambda_f(p^\delta)f(Z)$. This paper examines the series $\sum_{\delta=0}^\infty a(p^\delta N)t^\delta$ ($p$ does not divide $N$). It is proved that each such series is a rational function, where the degree of the numerator of this function does not exceed $2^n-2$ and the denominator coincides with the denominator of the series $\sum_{\delta=0}^\infty \lambda_f(p^\delta)t^\delta$. Bibliography: 6 titles.
@article{SM_1975_25_4_a5,
     author = {N. A. Zharkovskaya},
     title = {On~the connection of the eigenvalues {of~Hecke} operators and the {Fourier} coefficients of eigenfunctions for {Siegel's} modular forms of genus~$n$},
     journal = {Sbornik. Mathematics},
     pages = {549--557},
     publisher = {mathdoc},
     volume = {25},
     number = {4},
     year = {1975},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1975_25_4_a5/}
}
TY  - JOUR
AU  - N. A. Zharkovskaya
TI  - On~the connection of the eigenvalues of~Hecke operators and the Fourier coefficients of eigenfunctions for Siegel's modular forms of genus~$n$
JO  - Sbornik. Mathematics
PY  - 1975
SP  - 549
EP  - 557
VL  - 25
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1975_25_4_a5/
LA  - en
ID  - SM_1975_25_4_a5
ER  - 
%0 Journal Article
%A N. A. Zharkovskaya
%T On~the connection of the eigenvalues of~Hecke operators and the Fourier coefficients of eigenfunctions for Siegel's modular forms of genus~$n$
%J Sbornik. Mathematics
%D 1975
%P 549-557
%V 25
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1975_25_4_a5/
%G en
%F SM_1975_25_4_a5
N. A. Zharkovskaya. On~the connection of the eigenvalues of~Hecke operators and the Fourier coefficients of eigenfunctions for Siegel's modular forms of genus~$n$. Sbornik. Mathematics, Tome 25 (1975) no. 4, pp. 549-557. http://geodesic.mathdoc.fr/item/SM_1975_25_4_a5/