On~the connection of the eigenvalues of~Hecke operators and the Fourier coefficients of eigenfunctions for Siegel's modular forms of genus~$n$
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 25 (1975) no. 4, pp. 549-557
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $f(z)=\sum_{N\geqslant0}a(N)\exp2\pi i\sigma(NZ)$ be Siegel's modular form of genus $n$ which is an eigenfunction for all operators in the $p$-component of a Hecke ring; in particular, $T_{p^\delta}f(Z)=\lambda_f(p^\delta)f(Z)$. This paper examines the series $\sum_{\delta=0}^\infty a(p^\delta N)t^\delta$ ($p$ does not divide $N$). It is proved that each such series is a rational function, where the degree of the numerator of this function does not exceed $2^n-2$ and the denominator coincides with the denominator of the series $\sum_{\delta=0}^\infty \lambda_f(p^\delta)t^\delta$.
Bibliography: 6 titles.
			
            
            
            
          
        
      @article{SM_1975_25_4_a5,
     author = {N. A. Zharkovskaya},
     title = {On~the connection of the eigenvalues {of~Hecke} operators and the {Fourier} coefficients of eigenfunctions for {Siegel's} modular forms of genus~$n$},
     journal = {Sbornik. Mathematics},
     pages = {549--557},
     publisher = {mathdoc},
     volume = {25},
     number = {4},
     year = {1975},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1975_25_4_a5/}
}
                      
                      
                    TY - JOUR AU - N. A. Zharkovskaya TI - On~the connection of the eigenvalues of~Hecke operators and the Fourier coefficients of eigenfunctions for Siegel's modular forms of genus~$n$ JO - Sbornik. Mathematics PY - 1975 SP - 549 EP - 557 VL - 25 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1975_25_4_a5/ LA - en ID - SM_1975_25_4_a5 ER -
%0 Journal Article %A N. A. Zharkovskaya %T On~the connection of the eigenvalues of~Hecke operators and the Fourier coefficients of eigenfunctions for Siegel's modular forms of genus~$n$ %J Sbornik. Mathematics %D 1975 %P 549-557 %V 25 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_1975_25_4_a5/ %G en %F SM_1975_25_4_a5
N. A. Zharkovskaya. On~the connection of the eigenvalues of~Hecke operators and the Fourier coefficients of eigenfunctions for Siegel's modular forms of genus~$n$. Sbornik. Mathematics, Tome 25 (1975) no. 4, pp. 549-557. http://geodesic.mathdoc.fr/item/SM_1975_25_4_a5/
