A~method of joining asymptotic expansions for the equation $\varepsilon\Delta u-a(x,y)u_y=f(x,y)$ in a~rectangle
Sbornik. Mathematics, Tome 25 (1975) no. 4, pp. 533-548
Voir la notice de l'article provenant de la source Math-Net.Ru
In the closed rectangle ($0\leqslant x\leqslant l_1$, $0\leqslant y\leqslant l_2$) as $\varepsilon\to0$ an asymptotic expansion of the solution of the Dirichlet problem for the equation indicated in the title is constructed and proved. Near the corners $(0,0)$ and $(l_1,0)$ the method of joining two different asymptotic expansions is employed.
Bibliography: 9 titles.
@article{SM_1975_25_4_a4,
author = {A. M. Il'in and E. F. Lelikova},
title = {A~method of joining asymptotic expansions for the equation $\varepsilon\Delta u-a(x,y)u_y=f(x,y)$ in a~rectangle},
journal = {Sbornik. Mathematics},
pages = {533--548},
publisher = {mathdoc},
volume = {25},
number = {4},
year = {1975},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1975_25_4_a4/}
}
TY - JOUR AU - A. M. Il'in AU - E. F. Lelikova TI - A~method of joining asymptotic expansions for the equation $\varepsilon\Delta u-a(x,y)u_y=f(x,y)$ in a~rectangle JO - Sbornik. Mathematics PY - 1975 SP - 533 EP - 548 VL - 25 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1975_25_4_a4/ LA - en ID - SM_1975_25_4_a4 ER -
%0 Journal Article %A A. M. Il'in %A E. F. Lelikova %T A~method of joining asymptotic expansions for the equation $\varepsilon\Delta u-a(x,y)u_y=f(x,y)$ in a~rectangle %J Sbornik. Mathematics %D 1975 %P 533-548 %V 25 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_1975_25_4_a4/ %G en %F SM_1975_25_4_a4
A. M. Il'in; E. F. Lelikova. A~method of joining asymptotic expansions for the equation $\varepsilon\Delta u-a(x,y)u_y=f(x,y)$ in a~rectangle. Sbornik. Mathematics, Tome 25 (1975) no. 4, pp. 533-548. http://geodesic.mathdoc.fr/item/SM_1975_25_4_a4/