A method of joining asymptotic expansions for the equation $\varepsilon\Delta u-a(x,y)u_y=f(x,y)$ in a rectangle
Sbornik. Mathematics, Tome 25 (1975) no. 4, pp. 533-548 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the closed rectangle ($0\leqslant x\leqslant l_1$, $0\leqslant y\leqslant l_2$) as $\varepsilon\to0$ an asymptotic expansion of the solution of the Dirichlet problem for the equation indicated in the title is constructed and proved. Near the corners $(0,0)$ and $(l_1,0)$ the method of joining two different asymptotic expansions is employed. Bibliography: 9 titles.
@article{SM_1975_25_4_a4,
     author = {A. M. Il'in and E. F. Lelikova},
     title = {A~method of joining asymptotic expansions for the equation $\varepsilon\Delta u-a(x,y)u_y=f(x,y)$ in a~rectangle},
     journal = {Sbornik. Mathematics},
     pages = {533--548},
     year = {1975},
     volume = {25},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1975_25_4_a4/}
}
TY  - JOUR
AU  - A. M. Il'in
AU  - E. F. Lelikova
TI  - A method of joining asymptotic expansions for the equation $\varepsilon\Delta u-a(x,y)u_y=f(x,y)$ in a rectangle
JO  - Sbornik. Mathematics
PY  - 1975
SP  - 533
EP  - 548
VL  - 25
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1975_25_4_a4/
LA  - en
ID  - SM_1975_25_4_a4
ER  - 
%0 Journal Article
%A A. M. Il'in
%A E. F. Lelikova
%T A method of joining asymptotic expansions for the equation $\varepsilon\Delta u-a(x,y)u_y=f(x,y)$ in a rectangle
%J Sbornik. Mathematics
%D 1975
%P 533-548
%V 25
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1975_25_4_a4/
%G en
%F SM_1975_25_4_a4
A. M. Il'in; E. F. Lelikova. A method of joining asymptotic expansions for the equation $\varepsilon\Delta u-a(x,y)u_y=f(x,y)$ in a rectangle. Sbornik. Mathematics, Tome 25 (1975) no. 4, pp. 533-548. http://geodesic.mathdoc.fr/item/SM_1975_25_4_a4/

[1] M. I. Vishik, L. A. Lyusternik, “Regulyarnoe vyrozhdenie i pogranichnyi sloi dlya lineinykh differentsialnykh uravnenii s malym parametrom”, Uspekhi matem. nauk, XII:5(77) (1957), 3–120 | MR

[2] L. P. Cook, G. S. S. Ludford, “The behavior as $\varepsilon\to0$ of solutions to $\varepsilon\nabla^2w=w_y$ on the rectangle $0\leqslant x\leqslant l_1$, $|y|\leqslant1$”, SIAM J. Mat. Anal., 4:1 (1973), 161–184 | DOI | MR | Zbl

[3] V. F. Butuzov, “Asimptotika resheniya uravneniya $\mu^2\Delta u-k^2(x, y)u=f(x, y)$”, Diff. uravneniya, X:9 (1973), 1654–1660 | MR

[4] M. Van-Daik, Metody vozmuschenii v mekhanike zhidkosti, izd-vo «Mir», Moskva, 1967

[5] Dzh. Koul, Metody vozmuschenii v prikladnoi matematike, izd-vo «Mir», Moskva, 1972 | MR

[6] L. E. Fraenkel, “On the method of matched expansions, I–III”, Proc. Cambridge Philos. Soc., 65 (1969), 209–284 | DOI | MR | Zbl

[7] A. M. Ilin, Yu. P. Gorkov, E. F. Lelikova, “O metode sraschivaniya asimptoticheskikh razlozhenii”, DAN SSSR, 217:5 (1974), 1033–1036 | MR

[8] A. M. Ilin, Yu. P. Gorkov, E. F. Lelikova, “Asimptotika resheniya ellipticheskogo uravneniya s malym parametrom pri starshikh proizvodnykh v okrestnosti osoboi kharakteristiki predelnogo uravneniya”, Trudy seminara im. I. G. Petrovskogo, 1 (1975), 75–133

[9] N. N. Lebedev, Spetsialnye funktsii i ikh prilozheniya, Gostekhizdat, Moskva, 1953