A~method of joining asymptotic expansions for the equation $\varepsilon\Delta u-a(x,y)u_y=f(x,y)$ in a~rectangle
Sbornik. Mathematics, Tome 25 (1975) no. 4, pp. 533-548

Voir la notice de l'article provenant de la source Math-Net.Ru

In the closed rectangle ($0\leqslant x\leqslant l_1$, $0\leqslant y\leqslant l_2$) as $\varepsilon\to0$ an asymptotic expansion of the solution of the Dirichlet problem for the equation indicated in the title is constructed and proved. Near the corners $(0,0)$ and $(l_1,0)$ the method of joining two different asymptotic expansions is employed. Bibliography: 9 titles.
@article{SM_1975_25_4_a4,
     author = {A. M. Il'in and E. F. Lelikova},
     title = {A~method of joining asymptotic expansions for the equation $\varepsilon\Delta u-a(x,y)u_y=f(x,y)$ in a~rectangle},
     journal = {Sbornik. Mathematics},
     pages = {533--548},
     publisher = {mathdoc},
     volume = {25},
     number = {4},
     year = {1975},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1975_25_4_a4/}
}
TY  - JOUR
AU  - A. M. Il'in
AU  - E. F. Lelikova
TI  - A~method of joining asymptotic expansions for the equation $\varepsilon\Delta u-a(x,y)u_y=f(x,y)$ in a~rectangle
JO  - Sbornik. Mathematics
PY  - 1975
SP  - 533
EP  - 548
VL  - 25
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1975_25_4_a4/
LA  - en
ID  - SM_1975_25_4_a4
ER  - 
%0 Journal Article
%A A. M. Il'in
%A E. F. Lelikova
%T A~method of joining asymptotic expansions for the equation $\varepsilon\Delta u-a(x,y)u_y=f(x,y)$ in a~rectangle
%J Sbornik. Mathematics
%D 1975
%P 533-548
%V 25
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1975_25_4_a4/
%G en
%F SM_1975_25_4_a4
A. M. Il'in; E. F. Lelikova. A~method of joining asymptotic expansions for the equation $\varepsilon\Delta u-a(x,y)u_y=f(x,y)$ in a~rectangle. Sbornik. Mathematics, Tome 25 (1975) no. 4, pp. 533-548. http://geodesic.mathdoc.fr/item/SM_1975_25_4_a4/