On~an estimate for a~function represented by a~Dirichlet series
Sbornik. Mathematics, Tome 25 (1975) no. 4, pp. 525-532

Voir la notice de l'article provenant de la source Math-Net.Ru

The article considers the series $$ f(z)=\sum_{k=1}^\infty a_ke^{\lambda_kz},\qquad0\lambda_k\uparrow\infty,\quad\sum_{k=1}^\infty\lambda_k^{-1}\infty, $$ convergent in the whole plane. Theorem 1. {\it Let $|f(x)|$ $-\infty$ where $0$. For given $\varepsilon>0$ and $h>0$ there exists a constant $A$, not depending on $f(z)$ and $H(x)$ such that $|f(z)|$ $x=\operatorname{Re}z,$ $|y|$.} Theorem 2. {\it If in addition $$ \delta=\varlimsup_{k\to\infty}\frac1{\lambda_k}\ln\biggl|\frac1{L'(\lambda_k)}\biggr|\infty,\qquad L(\lambda)=\prod_{k=1}^\infty\biggl(1-\frac\lambda{\lambda_k}\biggr), $$ then for arbitrary $z$ we have $|f(z)|$ $x=\operatorname{Re}z$.} The quantity $\delta$ cannot be replaced by a smaller one. These results strengthen corresponding results due to Gaier (RZhMat., 1967, 10B155) and Anderson and Binmore (RZhMat., 1972, 7B1115). Bibliography: 7 titles.
@article{SM_1975_25_4_a3,
     author = {Z. Sh. Karimov},
     title = {On~an estimate for a~function represented by {a~Dirichlet} series},
     journal = {Sbornik. Mathematics},
     pages = {525--532},
     publisher = {mathdoc},
     volume = {25},
     number = {4},
     year = {1975},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1975_25_4_a3/}
}
TY  - JOUR
AU  - Z. Sh. Karimov
TI  - On~an estimate for a~function represented by a~Dirichlet series
JO  - Sbornik. Mathematics
PY  - 1975
SP  - 525
EP  - 532
VL  - 25
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1975_25_4_a3/
LA  - en
ID  - SM_1975_25_4_a3
ER  - 
%0 Journal Article
%A Z. Sh. Karimov
%T On~an estimate for a~function represented by a~Dirichlet series
%J Sbornik. Mathematics
%D 1975
%P 525-532
%V 25
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1975_25_4_a3/
%G en
%F SM_1975_25_4_a3
Z. Sh. Karimov. On~an estimate for a~function represented by a~Dirichlet series. Sbornik. Mathematics, Tome 25 (1975) no. 4, pp. 525-532. http://geodesic.mathdoc.fr/item/SM_1975_25_4_a3/