On~an estimate for a~function represented by a~Dirichlet series
Sbornik. Mathematics, Tome 25 (1975) no. 4, pp. 525-532
Voir la notice de l'article provenant de la source Math-Net.Ru
The article considers the series
$$
f(z)=\sum_{k=1}^\infty a_ke^{\lambda_kz},\qquad0\lambda_k\uparrow\infty,\quad\sum_{k=1}^\infty\lambda_k^{-1}\infty,
$$
convergent in the whole plane.
Theorem 1. {\it Let $|f(x)|$ $-\infty$ where $0$. For given $\varepsilon>0$ and $h>0$ there exists a constant $A$, not depending on $f(z)$ and $H(x)$ such that $|f(z)|$ $x=\operatorname{Re}z,$ $|y|$.}
Theorem 2. {\it If in addition
$$
\delta=\varlimsup_{k\to\infty}\frac1{\lambda_k}\ln\biggl|\frac1{L'(\lambda_k)}\biggr|\infty,\qquad L(\lambda)=\prod_{k=1}^\infty\biggl(1-\frac\lambda{\lambda_k}\biggr),
$$
then for arbitrary $z$ we have $|f(z)|$ $x=\operatorname{Re}z$.}
The quantity $\delta$ cannot be replaced by a smaller one. These results strengthen corresponding results due to Gaier (RZhMat., 1967, 10B155) and Anderson and Binmore (RZhMat., 1972, 7B1115).
Bibliography: 7 titles.
@article{SM_1975_25_4_a3,
author = {Z. Sh. Karimov},
title = {On~an estimate for a~function represented by {a~Dirichlet} series},
journal = {Sbornik. Mathematics},
pages = {525--532},
publisher = {mathdoc},
volume = {25},
number = {4},
year = {1975},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1975_25_4_a3/}
}
Z. Sh. Karimov. On~an estimate for a~function represented by a~Dirichlet series. Sbornik. Mathematics, Tome 25 (1975) no. 4, pp. 525-532. http://geodesic.mathdoc.fr/item/SM_1975_25_4_a3/