Identical relations in finite Lie rings
Sbornik. Mathematics, Tome 25 (1975) no. 4, pp. 507-523 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article is devoted to proving that the identical relations of a finite Lie ring are consequences of a finite number of such relations. Some of the results on algebraic Lie algebras may be of independent interest. Bibliography: 13 titles.
@article{SM_1975_25_4_a2,
     author = {Yu. A. Bakhturin and A. Yu. Ol'shanskii},
     title = {Identical relations in finite {Lie} rings},
     journal = {Sbornik. Mathematics},
     pages = {507--523},
     year = {1975},
     volume = {25},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1975_25_4_a2/}
}
TY  - JOUR
AU  - Yu. A. Bakhturin
AU  - A. Yu. Ol'shanskii
TI  - Identical relations in finite Lie rings
JO  - Sbornik. Mathematics
PY  - 1975
SP  - 507
EP  - 523
VL  - 25
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1975_25_4_a2/
LA  - en
ID  - SM_1975_25_4_a2
ER  - 
%0 Journal Article
%A Yu. A. Bakhturin
%A A. Yu. Ol'shanskii
%T Identical relations in finite Lie rings
%J Sbornik. Mathematics
%D 1975
%P 507-523
%V 25
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1975_25_4_a2/
%G en
%F SM_1975_25_4_a2
Yu. A. Bakhturin; A. Yu. Ol'shanskii. Identical relations in finite Lie rings. Sbornik. Mathematics, Tome 25 (1975) no. 4, pp. 507-523. http://geodesic.mathdoc.fr/item/SM_1975_25_4_a2/

[1] Sheila Oates, M. B. Powell, “Identical relations in finite groups”, J. Algebra, 1 (1964), 11–39 | DOI | MR

[2] I. V. Lvov, “O mnogoobraziyakh assotsiativnykh kolets, I”, Algebra i logika, 12 (1973), 269–297 | MR

[3] Robert L. Kruse, “Identities satisfied by a finite ring”, J. Algebra, 26 (1973), 298–318 | DOI | MR | Zbl

[4] Kourovskaya tetrad, Nereshennye zadachi teorii grupp, izd-vo SO AN SSSR, Novosibirsk, 1965

[5] M. R. Vaughan-Lee, “Varietes of Lie algebras”, Quart. J. Math., Oxford Ser. (2), 21 (1970), 297–308 | DOI | MR | Zbl

[6] Kh. Neiman, Mnogoobraziya grupp, izd-vo «Mir», Moskva, 1969 | MR

[7] P. Kon, Universalnaya algebra, izd-vo «Mir», Moskva, 1968 | MR

[8] D. W. Barnes, M. L. Newell, “Some theorems on saturated homomorphs of soluble Lie algebras”, Math. Z., 115 (1970), 179–187 | DOI | MR | Zbl

[9] D. A. Towers, “A Frattini theory for algebras”, Proc. London Math. Soc. (3), 27 (1973), 440–462 | DOI | MR | Zbl

[10] N. Dzhekobson, Stroenie kolets, IL, Moskva, 1961

[11] N. Dzhekobson, Algebry Li, izd-vo «Mir», Moskva, 1964 | MR

[12] G. P. Kukin, “Podalgebry svobodnykh $p$-algebr Li”, Algebra i logika, 11 (1972), 535–575 | MR

[13] A. I. Shirshov, “O svobodnykh koltsakh Li”, Matem. sb., 45 (87) (1958), 113–122 | Zbl