Formal groups and bordisms with singularities
Sbornik. Mathematics, Tome 25 (1975) no. 4, pp. 487-505 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a certain class of rings it is shown that any formal group over a ring in the class can be realized as the formal group of a generalized cohomology theory, and that a multiplicative theory with the ring of a point in this same class is uniquely determined by its formal group. The results are applied to prove a theorem of Conner–Floyd type concerning the preservation of exactness by certain integral genera. Bibliography: 19 titles.
@article{SM_1975_25_4_a1,
     author = {Yu. B. Rudyak},
     title = {Formal groups and bordisms with singularities},
     journal = {Sbornik. Mathematics},
     pages = {487--505},
     year = {1975},
     volume = {25},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1975_25_4_a1/}
}
TY  - JOUR
AU  - Yu. B. Rudyak
TI  - Formal groups and bordisms with singularities
JO  - Sbornik. Mathematics
PY  - 1975
SP  - 487
EP  - 505
VL  - 25
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1975_25_4_a1/
LA  - en
ID  - SM_1975_25_4_a1
ER  - 
%0 Journal Article
%A Yu. B. Rudyak
%T Formal groups and bordisms with singularities
%J Sbornik. Mathematics
%D 1975
%P 487-505
%V 25
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1975_25_4_a1/
%G en
%F SM_1975_25_4_a1
Yu. B. Rudyak. Formal groups and bordisms with singularities. Sbornik. Mathematics, Tome 25 (1975) no. 4, pp. 487-505. http://geodesic.mathdoc.fr/item/SM_1975_25_4_a1/

[1] J. F. Adams, “A variant of E. H. Brown's representability theorem”, Topology, 10:3 (1971), 185–198 | DOI | MR | Zbl

[2] N. A. Baas, On the bordism theories of manifolds with singularities, Preprint series 31, Aarhus Univ., 1969 | Zbl

[3] N. Burbaki, Kommutativnaya algebra, izd-vo «Mir», Moskva, 1971 | MR

[4] V. M. Bukhshtaber, “Predstavlyayuschie prostranstva dlya $K$-funktora s koeffitsientami”, DAN SSSR, 186:3 (1969), 499–502 | Zbl

[5] V. M. Bukhshtaber, “Kharakter Chzhenya-Dolda v teorii kobordizmov, I”, Matem. sb., 83(125) (1970), 575–595 | Zbl

[6] V. M. Bukhshtaber, S. P. Novikov, “Formalnye gruppy, stepennye sistemy i operatory Adamsa”, Matem. sb., 84 (126) (1971), 81–118 | Zbl

[7] V. M. Bukhshtaber, A. S. Mischenko, S. P. Novikov, “Formalnye gruppy i ikh rol v apparate algebraicheskoi topologii”, UMN, XXVI:2 (158) (1971), 131–154

[8] P. Conner, L. Smith, “On the complex bordism of finite complexes”, Publ. Math. IHES, 37 (1969), 117–221 | MR | Zbl

[9] A. Dold, “Sootnosheniya mezhdu ordinarnymi i ekstraordinarnymi teoriyami gomologii”, Matematika, 9:2 (1965), 8–15 | MR

[10] A. Fröhlich, Formal groups, Lecture Notes in Math., 74, Springer-Verlag, New York, 1968 | MR

[11] A. Kartan, S. Eilenberg, Gomologicheskaya algebra, IL, Moskva, 1960

[12] P. Konner, E. Floid, Dopolnenie k knige Gladkie periodicheskie otobrazheniya, izd-vo «Mir», Moskva, 1969

[13] P. Landweber, “Associated prime ideals and Hopf algebra”, J. Pure Appl. Algebra, 73:1 (1973), 43–58 | DOI | MR

[14] S. Maklein, Gomologiya, izd-vo «Mir», Moskva, 1966

[15] J. Morava, Extraordinary $K$-theories, preprint, 1970 | Zbl

[16] S. P. Novikov, “Metody algebraicheskoi topologii s tochki zreniya teorii kobordizmov”, Izv. AN SSSR, seriya matem., 31 (1967), 855–951 | Zbl

[17] D. Quillen, “On the formal group laws of unoriented and complex cobordism theory”, Bull. Amer. Math. Soc., 75:6 (1969), 1293–1298 | DOI | MR | Zbl

[18] Yu. B. Rudyak, “Stabilnaya $k$-teoriya i bordizmy mnogoobrazii s osobennostyami”, DAN SSSR, 216:6 (1974), 1222–1225 | Zbl

[19] L. Smith, “A note on annihilator ideal of complex bordism classes”, Pacific J. Math., 38:2 (1971), 551–558 | MR | Zbl