The Cauchy problem for nonlinear Schrödinger-type equations
Sbornik. Mathematics, Tome 25 (1975) no. 3, pp. 429-440
Cet article a éte moissonné depuis la source Math-Net.Ru
The Cauchy problem for the equation $$ \frac{\partial u(t,x)}{\partial t}=-i\Delta u+f(u),\qquad f(u)=\sum_{k=2}^\infty f_ku^k, $$ is investigated. The solution is sought in the class of functions $u(t,x)$ which belong to a space $V_K'$ at each $t\in\mathbf R^1$. It is proved that the solution constructed is periodic in $t$. Bibliography: 2 titles.
@article{SM_1975_25_3_a5,
author = {M. I. Vishik and A. V. Fursikov},
title = {The {Cauchy} problem for nonlinear {Schr\"odinger-type} equations},
journal = {Sbornik. Mathematics},
pages = {429--440},
year = {1975},
volume = {25},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1975_25_3_a5/}
}
M. I. Vishik; A. V. Fursikov. The Cauchy problem for nonlinear Schrödinger-type equations. Sbornik. Mathematics, Tome 25 (1975) no. 3, pp. 429-440. http://geodesic.mathdoc.fr/item/SM_1975_25_3_a5/
[1] M. I. Vishik, A. V. Fursikov, “Nekotorye voprosy teorii nelineinykh ellipticheskikh i parabolicheskikh uravnenii”, Matem. sb., 94(136) (1974), 324–357
[2] M. I. Vishik, A. V. Fursikov, “Analiticheskie pervye integraly nelineinykh parabolicheskikh v smysle I. G. Petrovskogo sistem differentsialnykh uravnenii i ikh prilozheniya”, Uspekhi matem. nauk, XXIX:2(176) (1974), 123–153