Inductive purities in Abelian groups
Sbornik. Mathematics, Tome 25 (1975) no. 3, pp. 389-418

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper we study purities $\omega$ in categories of Abelian groups having the property that the union of an increasing chain of $\omega$-pure subgroups of an Abelian group $G$ is itself an $\omega$-pure subgroup of $G$. Such purities are called inductive. For every prime number $p$ we set $A\subseteq_{\eta_p}B$ if for $A\ni a=p^kb$, $b\in B$, there is an $a'\in A$ and an $l\geqslant0$ such that $p^la=p^{k+l}a'$. Head purities are defined as purities of the form $\eta_\Pi=\bigcap_{p\in\Pi}\eta_p$, where $\Pi$ is a set of prime numbers. Head purities and $\varepsilon$-purities, evidently, are inductive. In the paper we show that every inductive purity in the category of all torsion-free Abelian groups is a certain $\Pi$-servancy, every inductive purity in the category of all periodic Abelian groups is a certain $\varepsilon$-purity, and every inductive purity in the category of all Abelian groups is the intersection of a certain $\varepsilon$-purity and a certain Head purity. Bibliography: 8 titles.
@article{SM_1975_25_3_a3,
     author = {A. A. Manovtsev},
     title = {Inductive purities in {Abelian} groups},
     journal = {Sbornik. Mathematics},
     pages = {389--418},
     publisher = {mathdoc},
     volume = {25},
     number = {3},
     year = {1975},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1975_25_3_a3/}
}
TY  - JOUR
AU  - A. A. Manovtsev
TI  - Inductive purities in Abelian groups
JO  - Sbornik. Mathematics
PY  - 1975
SP  - 389
EP  - 418
VL  - 25
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1975_25_3_a3/
LA  - en
ID  - SM_1975_25_3_a3
ER  - 
%0 Journal Article
%A A. A. Manovtsev
%T Inductive purities in Abelian groups
%J Sbornik. Mathematics
%D 1975
%P 389-418
%V 25
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1975_25_3_a3/
%G en
%F SM_1975_25_3_a3
A. A. Manovtsev. Inductive purities in Abelian groups. Sbornik. Mathematics, Tome 25 (1975) no. 3, pp. 389-418. http://geodesic.mathdoc.fr/item/SM_1975_25_3_a3/