Inductive purities in Abelian groups
Sbornik. Mathematics, Tome 25 (1975) no. 3, pp. 389-418 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper we study purities $\omega$ in categories of Abelian groups having the property that the union of an increasing chain of $\omega$-pure subgroups of an Abelian group $G$ is itself an $\omega$-pure subgroup of $G$. Such purities are called inductive. For every prime number $p$ we set $A\subseteq_{\eta_p}B$ if for $A\ni a=p^kb$, $b\in B$, there is an $a'\in A$ and an $l\geqslant0$ such that $p^la=p^{k+l}a'$. Head purities are defined as purities of the form $\eta_\Pi=\bigcap_{p\in\Pi}\eta_p$, where $\Pi$ is a set of prime numbers. Head purities and $\varepsilon$-purities, evidently, are inductive. In the paper we show that every inductive purity in the category of all torsion-free Abelian groups is a certain $\Pi$-servancy, every inductive purity in the category of all periodic Abelian groups is a certain $\varepsilon$-purity, and every inductive purity in the category of all Abelian groups is the intersection of a certain $\varepsilon$-purity and a certain Head purity. Bibliography: 8 titles.
@article{SM_1975_25_3_a3,
     author = {A. A. Manovtsev},
     title = {Inductive purities in {Abelian} groups},
     journal = {Sbornik. Mathematics},
     pages = {389--418},
     year = {1975},
     volume = {25},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1975_25_3_a3/}
}
TY  - JOUR
AU  - A. A. Manovtsev
TI  - Inductive purities in Abelian groups
JO  - Sbornik. Mathematics
PY  - 1975
SP  - 389
EP  - 418
VL  - 25
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1975_25_3_a3/
LA  - en
ID  - SM_1975_25_3_a3
ER  - 
%0 Journal Article
%A A. A. Manovtsev
%T Inductive purities in Abelian groups
%J Sbornik. Mathematics
%D 1975
%P 389-418
%V 25
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1975_25_3_a3/
%G en
%F SM_1975_25_3_a3
A. A. Manovtsev. Inductive purities in Abelian groups. Sbornik. Mathematics, Tome 25 (1975) no. 3, pp. 389-418. http://geodesic.mathdoc.fr/item/SM_1975_25_3_a3/

[1] A. P. Mishina, L. A. Skornyakov, Abelevy gruppy i moduli, izd-vo «Nauka», Moskva, 1969 | MR

[2] V. S. Rokhlina, “Nekotorye klassy abelevykh grupp”, Matem. sb., 83(125) (1970), 214–221 | Zbl

[3] P. S. Aleksandrov, Vvedenie v obschuyu teoriyu mnozhestv i funktsii, Gostekhizdat, Moskva, 1948

[4] A. I. Generalov, “K opredeleniyu chistoty modulei”, Matem. zametki, 11:4 (1972), 375–380 | MR | Zbl

[5] A. G. Kurosh, Teoriya grupp, izd-vo «Nauka», Moskva, 1966 | MR

[6] L. Fuks, Beskonechnye abelevy gruppy, izd-vo «Mir», Moskva, 1974

[7] T. J. Head, “A direct limit representation for abelian groups with an application to tensor sequences”, Acta mat. Hung., 18:1–2 (1967), 231–234 | DOI | MR | Zbl

[8] L. Bican, “Notes on purities”, Czech. Math. J., 22:4 (1972), 525–534 | MR | Zbl