Local homology and cohomology, homology dimension and generalized manifolds
Sbornik. Mathematics, Tome 25 (1975) no. 3, pp. 323-349 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper the relationships between various kinds of local homology and cohomology are studied. Some local characteristics of homology dimension are established. It is shown that homology manifolds over countable rings automatically possess a number of properties ordinarily included in the definition. Bibliography: 25 titles.
@article{SM_1975_25_3_a0,
     author = {A. \`E. Kharlap},
     title = {Local homology and cohomology, homology dimension and generalized manifolds},
     journal = {Sbornik. Mathematics},
     pages = {323--349},
     year = {1975},
     volume = {25},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1975_25_3_a0/}
}
TY  - JOUR
AU  - A. È. Kharlap
TI  - Local homology and cohomology, homology dimension and generalized manifolds
JO  - Sbornik. Mathematics
PY  - 1975
SP  - 323
EP  - 349
VL  - 25
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1975_25_3_a0/
LA  - en
ID  - SM_1975_25_3_a0
ER  - 
%0 Journal Article
%A A. È. Kharlap
%T Local homology and cohomology, homology dimension and generalized manifolds
%J Sbornik. Mathematics
%D 1975
%P 323-349
%V 25
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1975_25_3_a0/
%G en
%F SM_1975_25_3_a0
A. È. Kharlap. Local homology and cohomology, homology dimension and generalized manifolds. Sbornik. Mathematics, Tome 25 (1975) no. 3, pp. 323-349. http://geodesic.mathdoc.fr/item/SM_1975_25_3_a0/

[1] M. Atya, I. Makdonald, Vvedenie v kommutativnuyu algebru, izd-vo «Mir», Moskva, 1972 | MR

[2] E. M. Beniaminov, “Universalnoe svoistvo gomologii Deevelya”, Matem. sb., 84(123) (1971), 66–80 | MR | Zbl

[3] E. M. Beniaminov, “Spektralnaya posledovatelnost nepreryvnogo otobrazheniya i pokrytiya dlya gomologii Deevelya”, Matem. sb., 88 (130) (1972), 211–217 | MR | Zbl

[4] E. M. Beniaminov, E. G. Sklyarenko, “O lokalnykh gruppakh kogomologii”, DAN SSSR, 176:5 (1967), 987–990 | MR | Zbl

[5] R. Godeman, Algebraicheskaya topologiya i teoriya puchkov, IL, Moskva, 1961

[6] A. Grotendik, O nekotorykh voprosakh gomologicheskoi algebry, IL, Moskva, 1961

[7] V. I. Kuzminov, “O proizvodnykh funktorakh funktora proektivnogo predela”, Sib. matem. zh., 8:2 (1967), 333–345 | MR

[8] V. I. Kuzminov, “Gomologicheskaya teoriya razmernosti”, Uspekhi matem. nauk, XXIII:5(143) (1968), 3–49 | MR

[9] V. G. Miryuk, “Gomologii i kogomologii mnozhestv i ikh okrestnostei”, Matem. sb., 92(134) (1973), 306–318

[10] E. G. Sklyarenko, “Teoriya gomologii i aksioma tochnosti”, Uspekhi matem. nauk, XXIV:5(149) (1969), 87–140

[11] E. G. Sklyarenko, “Teoremy edinstvennosti v teorii gomologii”, Matem. sb., 85 (127) (1971), 201–223 | Zbl

[12] E. G. Sklyarenko, “K teorii obobschennykh mnogoobrazii”, Izv. AN SSSR, seriya matem., 35 (1971), 831–843 | Zbl

[13] P. Alexandroff, “Dimensionstheorie”, Math. Ann., 106 (1932), 161–238 | DOI | MR | Zbl

[14] P. Alexandroff, “On local properties of closed sets”, Ann. Math., 36:1 (1935), 1–35 | DOI | MR | Zbl

[15] A. Borel, Seminar on transformation groups, Ann. of Math. Studies, 46, 1960 | MR | Zbl

[16] A. Borel, J. C. Moore, “Homology theory for locally compact spaces”, Mich. Math. J., 7 (1960), 137–160 | DOI | MR

[17] G. E. Bredon, Sheaf theory, New York, Mc Graw-Hill, 1967 | MR

[18] G. E. Bredon, “Wilder manifolds are locally orientable”, Proc. Nat. Acad. Sci. USA, 63:4 (1969), 1079–1081 | DOI | MR | Zbl

[19] M. Castellet, “A product theorem in dimension”, Math. Z., 128:3 (1972), 195–197 | DOI | MR | Zbl

[20] P. Conner, “On the impossibility of fibering certain manifolds by a compact fiber”, Mich. Math. J., 4 (1957), 249–256 | DOI | MR

[21] B. I. Gray, “Space of the same $n$-type for all $n$”, Topology, 5:3 (1966), 241–243 | DOI | MR | Zbl

[22] A. Grothendieck, J. Dieudonné, “Eléments de géométrie algébrigue, III”, Publ. Math. Inst. Hautes Etudes, 11 (1961), 1–167

[23] F. Raymond, “Local cohomology groups with closed supports”, Math. Z., 76:1 (1961), 31–41 | DOI | MR | Zbl

[24] J. E. Roos, “Sur les foncteurs dérivés de lim. Applications”, C. r. Acad, sci., 252:24 (1961), 3702–3704 | MR | Zbl

[25] L. A. Laudal, “Cohomologie locale. Applications”, Math. Scand., 12:2 (1963), 147–162 | MR