Isoperimetric problems for the convex hulls of polygonal lines and curves in multidimensional spaces
Sbornik. Mathematics, Tome 25 (1975) no. 2, pp. 276-294
Voir la notice de l'article provenant de la source Math-Net.Ru
Sharp estimates are obtained for the convex hulls of polygonal lines which are convex in $\mathbf R^n$ (i.e. which are cut by an arbitrary hyperplane no more than $n$ times) and have segments of given length and number. The extremal polygonal lines are found.
Closed and open polygonal lines are considered. Passing to the limit yields the solution of similar problems for convex curves.
Bibliography: 13 titles.
@article{SM_1975_25_2_a5,
author = {A. A. Nudelman},
title = {Isoperimetric problems for the convex hulls of polygonal lines and curves in multidimensional spaces},
journal = {Sbornik. Mathematics},
pages = {276--294},
publisher = {mathdoc},
volume = {25},
number = {2},
year = {1975},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1975_25_2_a5/}
}
TY - JOUR AU - A. A. Nudelman TI - Isoperimetric problems for the convex hulls of polygonal lines and curves in multidimensional spaces JO - Sbornik. Mathematics PY - 1975 SP - 276 EP - 294 VL - 25 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1975_25_2_a5/ LA - en ID - SM_1975_25_2_a5 ER -
A. A. Nudelman. Isoperimetric problems for the convex hulls of polygonal lines and curves in multidimensional spaces. Sbornik. Mathematics, Tome 25 (1975) no. 2, pp. 276-294. http://geodesic.mathdoc.fr/item/SM_1975_25_2_a5/