Isoperimetric problems for the convex hulls of polygonal lines and curves in multidimensional spaces
Sbornik. Mathematics, Tome 25 (1975) no. 2, pp. 276-294 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Sharp estimates are obtained for the convex hulls of polygonal lines which are convex in $\mathbf R^n$ (i.e. which are cut by an arbitrary hyperplane no more than $n$ times) and have segments of given length and number. The extremal polygonal lines are found. Closed and open polygonal lines are considered. Passing to the limit yields the solution of similar problems for convex curves. Bibliography: 13 titles.
@article{SM_1975_25_2_a5,
     author = {A. A. Nudelman},
     title = {Isoperimetric problems for the convex hulls of polygonal lines and curves in multidimensional spaces},
     journal = {Sbornik. Mathematics},
     pages = {276--294},
     year = {1975},
     volume = {25},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1975_25_2_a5/}
}
TY  - JOUR
AU  - A. A. Nudelman
TI  - Isoperimetric problems for the convex hulls of polygonal lines and curves in multidimensional spaces
JO  - Sbornik. Mathematics
PY  - 1975
SP  - 276
EP  - 294
VL  - 25
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1975_25_2_a5/
LA  - en
ID  - SM_1975_25_2_a5
ER  - 
%0 Journal Article
%A A. A. Nudelman
%T Isoperimetric problems for the convex hulls of polygonal lines and curves in multidimensional spaces
%J Sbornik. Mathematics
%D 1975
%P 276-294
%V 25
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1975_25_2_a5/
%G en
%F SM_1975_25_2_a5
A. A. Nudelman. Isoperimetric problems for the convex hulls of polygonal lines and curves in multidimensional spaces. Sbornik. Mathematics, Tome 25 (1975) no. 2, pp. 276-294. http://geodesic.mathdoc.fr/item/SM_1975_25_2_a5/

[1] T. Bonnesen, W. Fenchel, Theorie der konvexen Körper, Ergebn. Math., Berlin, 1934 | Zbl

[2] E. Egerváry, “On the smallest convex cover of a simple arc of space-curve”, Publ. math. Debrecen, 1 (1949), 65–70 | MR | Zbl

[3] I. J. Schoenberg, “An isoperimetric inequality for closed curves convex in even dimensional Euclidean spaces”, Acta Math., 91 (1954), 143–164 | DOI | MR | Zbl

[4] Z. A. Melzak, “The isoperimetric problem of the convex hull of a closed space curve”, Proc. Amer. Math. Soc., 11:2 (1960), 265–274 | DOI | MR | Zbl

[5] Z. A. Melzak, “Existence of periodic solutions”, Comm. pure and appl. math., 20 (1967), 771–774 | DOI | MR | Zbl

[6] Z. A. Melzak, “Numerical evaluation of an isoperimetric constant”, Math. of computation, 22:101 (1968), 188–190 | DOI | MR | Zbl

[7] M. G. Krein, A. A. Nudelman, Problema momentov Markova i ekstremalnye zadachi, izd-vo «Nauka», Moskva, 1973 | MR

[8] M. G. Krein, “Idei P. L. Chebysheva i A. A. Markova v teorii predelnykh velichin integralov i ikh dalneishee razvitie”, Uspekhi matem. nauk, VI:4(45) (1951), 3–120 | MR

[9] M. G. Krein, P. G. Rekhtman, “Razvitie teorii Chebysheva-Markova predelnykh velichin integralov v odnom novom napravlenii”, Uspekhi matem. nauk, X:1(66) (1955), 67–78 | MR

[10] S. Karlin, W. J. Studden, Tchebycheff systems; with applications in analysis and statistics, Interscience Publishers, 1966 | MR | Zbl

[11] I. P. Fedchina, “O kanonicheskikh predstavleniyakh obobschennykh momentov na diskretnom mnozhestve”, Matem. zametki, 5:1 (1969), 39–48 | MR | Zbl

[12] F. R. Gantmakher, M. G. Krein, Ostsillyatsionnye matritsy i yadra i malye kolebaniya mekhanicheskikh sistem, Gostekhizdat, Moskva, 1950

[13] O. Haupt, H. Künneth, Geometrische Ordnungen, Springer-Verlag, 1967 | MR | Zbl