Estimates for differential operators with constant coefficients in a half-space
Sbornik. Mathematics, Tome 25 (1975) no. 2, pp. 225-258 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Necessary and sufficient conditions (and also more explicit sufficient conditions) are obtained for the validity of the following estimates for differential operators with constant coefficients in the half-space $\mathbf R_+^n=\{(x,t):x\in\mathbf R^{n-1},\ t\geqslant0\}$: \begin{gather*} \|\mathscr R(D)u\|^2\leqslant C\|\mathscr P(D)u\|^2,\qquad u\in C_0^\infty(\mathbf R_+^n),\quad (\mathscr Q_j(D)u)(x;0)=0\ (j=1,\dots,N), \\ \|\mathscr R(D)u\|^2\leqslant C\biggl(\|\mathscr P(D)u\|^2+\sum_{j=1}^N\langle\!\langle\mathscr Q_j(D)u\rangle\!\rangle _{s_j}^2\biggr), \end{gather*} where ${\|\cdot\|}$ and $\langle\!\langle\,\cdot\,\rangle\!\rangle$ are the norms in $L_2(\mathbf R_+^n)$ and $H_s(\partial\mathbf R_+^n)$, $$ D=\biggl(\frac1i\,\frac\partial{\partial x_1},\dots,\frac1i\,\frac\partial{\partial x_{n-1}};\frac1i\,\frac\partial{\partial t}\biggr), $$ and $C_0^\infty(\mathbf R_+^n)$ is the space of restrictions to $\mathbf R_+^n$ of functions in $C_0^\infty(\mathbf R^n)$. Bibliography: 18 titles.
@article{SM_1975_25_2_a3,
     author = {V. G. Maz'ya and I. V. Gel'man},
     title = {Estimates for differential operators with constant coefficients in a~half-space},
     journal = {Sbornik. Mathematics},
     pages = {225--258},
     year = {1975},
     volume = {25},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1975_25_2_a3/}
}
TY  - JOUR
AU  - V. G. Maz'ya
AU  - I. V. Gel'man
TI  - Estimates for differential operators with constant coefficients in a half-space
JO  - Sbornik. Mathematics
PY  - 1975
SP  - 225
EP  - 258
VL  - 25
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1975_25_2_a3/
LA  - en
ID  - SM_1975_25_2_a3
ER  - 
%0 Journal Article
%A V. G. Maz'ya
%A I. V. Gel'man
%T Estimates for differential operators with constant coefficients in a half-space
%J Sbornik. Mathematics
%D 1975
%P 225-258
%V 25
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1975_25_2_a3/
%G en
%F SM_1975_25_2_a3
V. G. Maz'ya; I. V. Gel'man. Estimates for differential operators with constant coefficients in a half-space. Sbornik. Mathematics, Tome 25 (1975) no. 2, pp. 225-258. http://geodesic.mathdoc.fr/item/SM_1975_25_2_a3/

[1] N. Aronszajn, “On coercive integro-differential quadratic forms”, Conference on partial differential equations (Univ. of Kansas), no. 14, 1954, 94–106

[2] S. Agmon, “The coerciveness problem for integro-differential forms”, J. d'Analyse Math., 6:2 (1958), 183–223 | DOI | MR | Zbl

[3] F. E. Browder, “On regularity properties of solutions of elliptic differential equations”, Comm. Pure Appl. Math., 9 (1956), 351–361 | DOI | MR | Zbl

[4] L. Nirenberg, “Remarks on strongly elliptic partial differential equations”, Comm. Pure Appl. Math., 8 (1955), 649–675 | DOI | MR | Zbl

[5] B. Malgrange, “Existence et approximation des solutions des equations aux derivees partielles et des equations de convolution”, Ann. Inst. Fourier (Grenoble), 6 (1955–1956), 271–335 | MR

[6] L. Khermander, K teorii obschikh differentsialnykh operatorov v chastnykh proizvodnykh, IL, Moskva, 1959

[7] J. Peetre, “On estimating the solutions of hypoelliptic differential equations near the plane boundary”, Math. Scandin, 9:2 (1961), 337–351 | MR | Zbl

[8] M. Schechter, “On the dominance of partial differential operators, II”, Ann. Scuola Norm. Super. Pisa, sci fis.-mat., ser. III, 18:2 (1964), 255–282 | MR | Zbl

[9] M. Schechter, “Systems of partial differential equations in a half-space”, Comm. Pure Appl. Math., 17:4 (1964), 423–434 | DOI | MR | Zbl

[10] C. F. Schubert, “Overdetermined systems on $L^2(\mathbf{R}_+^n)$”, Lecture Notes on Math., 183 (1971), 221–225 | DOI | MR | Zbl

[11] I. V. Gelman, V. G. Mazya, “Otsenki na granitse dlya differentsialnykh operatorov s postoyannymi koeffitsientami v poluprostranstve”, Izv. AN SSSR, seriya matem., 38 (1974), 663–720 | MR

[12] T. Matsuzawa, “On quasi-elliptic boundary problems”, Trans. Amer. Math. Soc., 133:1 (1968), 241–265 | DOI | MR | Zbl

[13] C. Parenti, “Valutazioni a priori e regolarita per soluzioni di equazioni quasi-ellittiche”, Rend. Semin, Matem. Univ. Padova, 45 (1971), 1–70 | MR | Zbl

[14] L. R. Volevich, B. P. Paneyakh, “Nekotorye prostranstva obobschennykh funktsii i teoremy vlozheniya”, Uspekhi matem. nauk, XX:1(121) (1965), 3–74

[15] I. V. Gelman, V. G. Mazya, “Otsenki dlya differentsialnykh operatorov s postoyannymi koeffitsientami v poluprostranstve”, DAN SSSR, 202:4 (1972), 751–754 | MR

[16] I. S. Louhivaara, Ch. G. Simader, “Uber nichtelliptische lineare partielle Differentialoperation mit konstanten Koeffizienten”, Ann. Acad. Sci. Fenn. ser., A1, 1972, no. 513, 3–22 | MR

[17] V. E. Katsnelson, “O nekotorykh operatorakh, deistvuyuschikh v prostranstvakh, porozhdennykh funktsiyami $(t-z_k)^{-1}$”, Teoriya funktsii, funktsionalnyi analiz i ikh prilozheniya, no. 4, izd. KhGU, 1967, 58–66

[18] D. K. Faddeev, I. S. Sominskii, Sbornik zadach po vysshei algebre, izd-vo «Nauka», Moskva, 1972