On convergence of Riesz spherical means of multiple Fourier series
Sbornik. Mathematics, Tome 25 (1975) no. 2, pp. 177-197 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An $N$-dimensional analog is proved of a theorem of Plessner and Ul'yanov on equivalent conditions for convergence of certain series and integrals. There is obtained from it a sufficient condition on the quadratic modulus of continuity of a periodic function of $N\geqslant2$ variables ensuring the a.e. convergence of the spherical sums of its Fourier series. A two-dimensional analog of a theorem of Luzin and Denjoy and an $N$-dimensional analog of the Dini–Lipschitz criterion are proved. A necessary and sufficient condition on a function $\Phi(u)$ is derived ensuring the pointwise convergence of the Riesz spherical means of critical order of multiple Fourier series of functions of bounded $\Phi$-variation. Bibliography: 33 titles.
@article{SM_1975_25_2_a1,
     author = {B. I. Golubov},
     title = {On convergence of {Riesz} spherical means of multiple {Fourier} series},
     journal = {Sbornik. Mathematics},
     pages = {177--197},
     year = {1975},
     volume = {25},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1975_25_2_a1/}
}
TY  - JOUR
AU  - B. I. Golubov
TI  - On convergence of Riesz spherical means of multiple Fourier series
JO  - Sbornik. Mathematics
PY  - 1975
SP  - 177
EP  - 197
VL  - 25
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1975_25_2_a1/
LA  - en
ID  - SM_1975_25_2_a1
ER  - 
%0 Journal Article
%A B. I. Golubov
%T On convergence of Riesz spherical means of multiple Fourier series
%J Sbornik. Mathematics
%D 1975
%P 177-197
%V 25
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1975_25_2_a1/
%G en
%F SM_1975_25_2_a1
B. I. Golubov. On convergence of Riesz spherical means of multiple Fourier series. Sbornik. Mathematics, Tome 25 (1975) no. 2, pp. 177-197. http://geodesic.mathdoc.fr/item/SM_1975_25_2_a1/

[1] L. Carleson, “On convergence and growth of partial sums of Fourier series”, Acta Math., 116:1–2 (1966), 135–157 | DOI | MR | Zbl

[2] C. Fefferman, “On divergence of multiple Fourier series”, Bull. Amer. Math. Soc., 77:1 (1971), 87–88 | MR

[3] N. R. Tevzadze, “O skhodimosti dvoinogo ryada Fure funktsii, summiruemoi s kvadratom”, Soobsch. AN GruzSSR, 58:2 (1970), 277–279 | MR | Zbl

[4] B. I. Golubov, “O skhodimosti sfericheskikh srednikh Rissa kratnykh ryadov i integralov Fure ot funktsii ogranichennoi obobschennoi variatsii”, Matem. sb., 89(121) (1972), 630–653 | MR | Zbl

[5] N. Wiener, “The quadratic variation of a function and its Fourier coefficients”, Massachusetts J. Math., 3 (1924), 72–94 | Zbl

[6] L. C. Young, “General inequalities for Stiltjes integrals and the convergence of Fourier series”, Math. Ann., 115:6 (1938), 581–612 | DOI | MR | Zbl

[7] A. Zigmund, Trigonometricheskie ryady, t. 1, izd-vo «Mir», Moskva, 1965 | MR

[8] M.-T. Cheng, “The Gibbs phenomenon and Bochner's summation method, II”, Duke Math. J., 17:4 (1950), 477–490 | DOI | MR | Zbl

[9] S. Bochner, “Summation of multiple Fourier series by spherical means”, Trans. Amer. Math. Soc., 40:2 (1936), 175–207 | DOI | MR | Zbl

[10] E. M. Stein, “On exponential sums arising in multiple Fourier series”, Ann. Math., 73:1 (1961), 87–109 | DOI | MR | Zbl

[11] R. Salem, “Essais sur les series trigonometriques”, Actualité scient. Industr., 1940, no. 862 | MR

[12] K. I. Oskolkov, “Obobschennaya variatsiya, indikatrisa Banakha i ravnomernaya skhodimost ryadov Fure”, Matem. zametki, 12:3 (1972), 313–324 | MR | Zbl

[13] A. Baernstein, “On the Fourier series of functions of bounded $\Phi$-variation”, Studia Math., 42:3 (1972), 234–248 | MR

[14] M.-T. Cheng, “The Gibbs phenomenon and Bochner's summation methods, I”, Duke Math. J., 17:2 (1950), 83–90 | DOI | MR | Zbl

[15] N. K. Bari, Trigonometricheskie ryady, Fizmatgiz, Moskva, 1961 | MR

[16] A. Plessner, “Über Konvergenz von trigonometrischen Reihen”, J. reine und angew. Math., 155 (1925), 15–25 | Zbl

[17] P. L. Ulyanov, “O nekotorykh ekvivalentnykh usloviyakh skhodimosti ryadov i integralov”, Uspekhi matem. nauk, VIII:6 (59) (1953), 133–141 | MR

[18] S. Kachmazh, G. Shteingauz, Teoriya ortogonalnykh ryadov, Fizmatgiz, Moskva, 1958

[19] P. L. Ulyanov, “O ryadakh po perestavlennoi trigonometricheskoi sisteme”, Izv. AN SSSR, seriya matem., 22 (1958), 515–542 | MR

[20] A. Zygmund, “A Cantor-Lebesgue theorem for double trigonometric series”, Studia Math., 43:2 (1972), 173–178 | MR | Zbl

[21] R. L. Cook, “A Cantor-Lebesgue theorem in two dimensions”, Proc. Amer. Math. Soc., 30:3 (1971), 547–550 | DOI | MR | Zbl

[22] S. B. Stechkin, “K teoreme Kantora-Lebega dlya dvoinykh trigonometricheskikh ryadov”, Matem. zametki, 12:1 (1972), 13–17

[23] H. Lebesgue, “Sur la representation trigonometrique approchée des fonctions satisfaisantes à une condition de Lipschitz”, Bull. Soc. Math. France, 38 (1910), 184–210 | MR | Zbl

[24] S. M. Nikolskii, “Ryad Fure funktsii s dannym modulem nepreryvnosti”, DAN SSSR, 52:3 (1946), 191–194

[25] B. I. Golubov, “O skhodimosti dvoinykh ryadov Fure funktsii ogranichennoi obobschennoi variatsii, I”, Sib. matem. zh., 15:2 (1974), 262–291 | MR | Zbl

[26] K. Chandrasekharan, S. Minakshisundaram, “Some results on double Fourier series”, Duke Math. J., 14 (1947), 731–753 | DOI | MR | Zbl

[27] B. I. Golubov, “O dostatochnom uslovii skhodimosti pochti vsyudu sfericheskikh chastnykh summ kratnykh ryadov Fure”, Soobsch. AN GruzSSR, 71:1 (1973), 29–32 | MR | Zbl

[28] S. B. Stechkin, “O poryadke nailuchshego priblizheniya nepreryvnykh funktsii”, Izv. AN SSSR, seriya matem., 19 (1955), 221–246 | Zbl

[29] N. I. Akhiezer, Lektsii po teorii approksimatsii, Gostekhizdat, Moskva–Leningrad, 1947 | Zbl

[30] B. I. Golubov, “O skhodimosti sfericheskikh srednikh Rissa kratnykh ryadov Fure”, DAN SSSR, 215:1 (1974), 31–34 | MR | Zbl

[31] V. S. Panferov, “Teorema Kantora - Lebega dlya dvoinykh trigonometricheskikh ryadov”, Matem. zametki, 14:5 (1973), 655–666 | MR | Zbl

[32] K. I. Babenko, “O summiruemosti i skhodimosti razlozhenii po sobstvennym funktsiyam differentsialnogo operatora”, Matem. sborn., 91 (133) (1973), 147–201 | MR | Zbl

[33] B. S. Mityagin, E. M. Nikishin, “O raskhodimosti ryadov Fure pochti vsyudu”, DAN SSSR, 210:1 (1973), 23–25 | MR | Zbl