On convergence of Riesz spherical means of multiple Fourier series
Sbornik. Mathematics, Tome 25 (1975) no. 2, pp. 177-197

Voir la notice de l'article provenant de la source Math-Net.Ru

An $N$-dimensional analog is proved of a theorem of Plessner and Ul'yanov on equivalent conditions for convergence of certain series and integrals. There is obtained from it a sufficient condition on the quadratic modulus of continuity of a periodic function of $N\geqslant2$ variables ensuring the a.e. convergence of the spherical sums of its Fourier series. A two-dimensional analog of a theorem of Luzin and Denjoy and an $N$-dimensional analog of the Dini–Lipschitz criterion are proved. A necessary and sufficient condition on a function $\Phi(u)$ is derived ensuring the pointwise convergence of the Riesz spherical means of critical order of multiple Fourier series of functions of bounded $\Phi$-variation. Bibliography: 33 titles.
@article{SM_1975_25_2_a1,
     author = {B. I. Golubov},
     title = {On convergence of {Riesz} spherical means of multiple {Fourier} series},
     journal = {Sbornik. Mathematics},
     pages = {177--197},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {1975},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1975_25_2_a1/}
}
TY  - JOUR
AU  - B. I. Golubov
TI  - On convergence of Riesz spherical means of multiple Fourier series
JO  - Sbornik. Mathematics
PY  - 1975
SP  - 177
EP  - 197
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1975_25_2_a1/
LA  - en
ID  - SM_1975_25_2_a1
ER  - 
%0 Journal Article
%A B. I. Golubov
%T On convergence of Riesz spherical means of multiple Fourier series
%J Sbornik. Mathematics
%D 1975
%P 177-197
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1975_25_2_a1/
%G en
%F SM_1975_25_2_a1
B. I. Golubov. On convergence of Riesz spherical means of multiple Fourier series. Sbornik. Mathematics, Tome 25 (1975) no. 2, pp. 177-197. http://geodesic.mathdoc.fr/item/SM_1975_25_2_a1/