Asymptotic behavior of the least deviations of the function $\operatorname{sgn}x$ from rational functions
Sbornik. Mathematics, Tome 25 (1975) no. 2, pp. 159-176

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that the best uniform approximation of $\operatorname{sgn}x$ by rational functions of order at most $n$ on the union of the two intervals $[-1,-\delta]\cup[\delta,1]$ ($0\delta1$) does not exceed $$ e^{\frac{\pi^2}2}\exp\biggl\{-\frac{\pi^2}2\frac n{\ln\frac1\delta+2\ln\ln\frac e\delta+2}\biggr\}. $$ Bibliography: 10 titles.
@article{SM_1975_25_2_a0,
     author = {A. P. Bulanov},
     title = {Asymptotic behavior of the least deviations of the function $\operatorname{sgn}x$ from rational functions},
     journal = {Sbornik. Mathematics},
     pages = {159--176},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {1975},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1975_25_2_a0/}
}
TY  - JOUR
AU  - A. P. Bulanov
TI  - Asymptotic behavior of the least deviations of the function $\operatorname{sgn}x$ from rational functions
JO  - Sbornik. Mathematics
PY  - 1975
SP  - 159
EP  - 176
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1975_25_2_a0/
LA  - en
ID  - SM_1975_25_2_a0
ER  - 
%0 Journal Article
%A A. P. Bulanov
%T Asymptotic behavior of the least deviations of the function $\operatorname{sgn}x$ from rational functions
%J Sbornik. Mathematics
%D 1975
%P 159-176
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1975_25_2_a0/
%G en
%F SM_1975_25_2_a0
A. P. Bulanov. Asymptotic behavior of the least deviations of the function $\operatorname{sgn}x$ from rational functions. Sbornik. Mathematics, Tome 25 (1975) no. 2, pp. 159-176. http://geodesic.mathdoc.fr/item/SM_1975_25_2_a0/