Asymptotic behavior of the least deviations of the function $\operatorname{sgn}x$ from rational functions
Sbornik. Mathematics, Tome 25 (1975) no. 2, pp. 159-176
Voir la notice de l'article provenant de la source Math-Net.Ru
It is shown that the best uniform approximation of $\operatorname{sgn}x$ by rational functions of order at most $n$ on the union of the two intervals $[-1,-\delta]\cup[\delta,1]$ ($0\delta1$) does not exceed
$$
e^{\frac{\pi^2}2}\exp\biggl\{-\frac{\pi^2}2\frac n{\ln\frac1\delta+2\ln\ln\frac e\delta+2}\biggr\}.
$$ Bibliography: 10 titles.
@article{SM_1975_25_2_a0,
author = {A. P. Bulanov},
title = {Asymptotic behavior of the least deviations of the function $\operatorname{sgn}x$ from rational functions},
journal = {Sbornik. Mathematics},
pages = {159--176},
publisher = {mathdoc},
volume = {25},
number = {2},
year = {1975},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1975_25_2_a0/}
}
TY - JOUR
AU - A. P. Bulanov
TI - Asymptotic behavior of the least deviations of the function $\operatorname{sgn}x$ from rational functions
JO - Sbornik. Mathematics
PY - 1975
SP - 159
EP - 176
VL - 25
IS - 2
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/SM_1975_25_2_a0/
LA - en
ID - SM_1975_25_2_a0
ER -
A. P. Bulanov. Asymptotic behavior of the least deviations of the function $\operatorname{sgn}x$ from rational functions. Sbornik. Mathematics, Tome 25 (1975) no. 2, pp. 159-176. http://geodesic.mathdoc.fr/item/SM_1975_25_2_a0/