On a~class of quasilinear hyperbolic equations
Sbornik. Mathematics, Tome 25 (1975) no. 1, pp. 145-158

Voir la notice de l'article provenant de la source Math-Net.Ru

In the bounded cylinder $Q=\Omega\times[0,T]$ with arbitrary fixed $T>0$ the mixed problem with Dirichlet boundary conditions is considered for the quasilinear hyperbolic equation $$ u_{tt}+(-1)^m\cdot a\biggl(\int_\Omega|\nabla^mu|^2\,dx\biggr)\cdot\Delta^mu=f. $$ A particular class of functions is introduced in which there is an existence and uniqueness theorem for solutions of this problem. A theorem on the unique solvability of the Cauchy problem for a certain nonlinear differential equation in Hilbert space is first proved. This problem is a very simple abstract analogue of the indicated mixed problem for the quasilinear hyperbolic equation. Bibliography: 2 titles.
@article{SM_1975_25_1_a8,
     author = {S. I. Pokhozhaev},
     title = {On a~class of quasilinear hyperbolic equations},
     journal = {Sbornik. Mathematics},
     pages = {145--158},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {1975},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1975_25_1_a8/}
}
TY  - JOUR
AU  - S. I. Pokhozhaev
TI  - On a~class of quasilinear hyperbolic equations
JO  - Sbornik. Mathematics
PY  - 1975
SP  - 145
EP  - 158
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1975_25_1_a8/
LA  - en
ID  - SM_1975_25_1_a8
ER  - 
%0 Journal Article
%A S. I. Pokhozhaev
%T On a~class of quasilinear hyperbolic equations
%J Sbornik. Mathematics
%D 1975
%P 145-158
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1975_25_1_a8/
%G en
%F SM_1975_25_1_a8
S. I. Pokhozhaev. On a~class of quasilinear hyperbolic equations. Sbornik. Mathematics, Tome 25 (1975) no. 1, pp. 145-158. http://geodesic.mathdoc.fr/item/SM_1975_25_1_a8/