A sufficient condition for global regularity of nets of curves in the Euclidean plane
Sbornik. Mathematics, Tome 25 (1975) no. 1, pp. 111-127 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Sufficient conditions are obtained for a net of lines in a plane given by $$ \alpha\,dx^2+2\beta\,dx\,dy+\gamma\,dy^2=0,\qquad\alpha\gamma-\beta^2<0, $$ to be homeomorphic to the cartesian net (globally or in some region). These conditions are expressed in terms of the integral of the modulus of the second Chebyshev vector of the net. We consider separately the special case when the net is formed by the characteristics of a hyperbolic transformation. Figures: 7. Bibliography: 6 titles.
@article{SM_1975_25_1_a6,
     author = {\`E. R. Rozendorn},
     title = {A~sufficient condition for global regularity of nets of curves in the {Euclidean} plane},
     journal = {Sbornik. Mathematics},
     pages = {111--127},
     year = {1975},
     volume = {25},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1975_25_1_a6/}
}
TY  - JOUR
AU  - È. R. Rozendorn
TI  - A sufficient condition for global regularity of nets of curves in the Euclidean plane
JO  - Sbornik. Mathematics
PY  - 1975
SP  - 111
EP  - 127
VL  - 25
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1975_25_1_a6/
LA  - en
ID  - SM_1975_25_1_a6
ER  - 
%0 Journal Article
%A È. R. Rozendorn
%T A sufficient condition for global regularity of nets of curves in the Euclidean plane
%J Sbornik. Mathematics
%D 1975
%P 111-127
%V 25
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1975_25_1_a6/
%G en
%F SM_1975_25_1_a6
È. R. Rozendorn. A sufficient condition for global regularity of nets of curves in the Euclidean plane. Sbornik. Mathematics, Tome 25 (1975) no. 1, pp. 111-127. http://geodesic.mathdoc.fr/item/SM_1975_25_1_a6/

[1] Ya. S. Dubnov, “Tenzornye kharakteristiki nekotorykh klassov poverkhnostei i prinadlezhaschikh im setei”, Trudy seminara po vektornomu i tenzornomu analizu, no. 4, ONTI, Moskva–Leningrad, 1937, 197–204

[2] N. V. Efimov, “Vozniknovenie osobennostei na poverkhnostyakh otritsatelnoi krivizny”, Matem. sb., 64 (106) (1964), 286–320 | MR | Zbl

[3] V. F. Kagan, Osnovy teorii poverkhnostei v tenzornom izlozhenii, ch. II, Gostekhizdat, Moskva–Leningrad, 1948 | MR

[4] L. S. Pontryagin, Obyknovennye differentsialnye uravneniya, izd-vo «Nauka», Moskva, 1970 | MR

[5] E. R. Rozendorn, “Nekotorye dostatochnye usloviya regulyarnosti poverkhnosti s postoyannoi otritsatelnoi vnutrennei kriviznoi”, DAN SSSR, 207:2 (1972), 296–300 | MR

[6] Ph. Hartman, A. Wintner, “On the asymptotic curves of a surface”, Amer. J. Math., 73:1 (1951), 149–172 | DOI | MR | Zbl