Homogeneous Riemannian spaces of negative curvature
Sbornik. Mathematics, Tome 25 (1975) no. 1, pp. 87-109 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper the structure of simply-transitive isometry groups of a Riemannian space with nonpositive curvature is studied. The results obtained are then applied to classify Riemannian spaces of negative curvature possessing a metabelian transitive isometry group and also to classify homogeneous Einstein spaces with nonpositive curvature and with dimension $m\leqslant5$. Bibliography: 13 titles.
@article{SM_1975_25_1_a5,
     author = {D. V. Alekseevskii},
     title = {Homogeneous {Riemannian} spaces of negative curvature},
     journal = {Sbornik. Mathematics},
     pages = {87--109},
     year = {1975},
     volume = {25},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1975_25_1_a5/}
}
TY  - JOUR
AU  - D. V. Alekseevskii
TI  - Homogeneous Riemannian spaces of negative curvature
JO  - Sbornik. Mathematics
PY  - 1975
SP  - 87
EP  - 109
VL  - 25
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1975_25_1_a5/
LA  - en
ID  - SM_1975_25_1_a5
ER  - 
%0 Journal Article
%A D. V. Alekseevskii
%T Homogeneous Riemannian spaces of negative curvature
%J Sbornik. Mathematics
%D 1975
%P 87-109
%V 25
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1975_25_1_a5/
%G en
%F SM_1975_25_1_a5
D. V. Alekseevskii. Homogeneous Riemannian spaces of negative curvature. Sbornik. Mathematics, Tome 25 (1975) no. 1, pp. 87-109. http://geodesic.mathdoc.fr/item/SM_1975_25_1_a5/

[1] J. A. Wolf, “Homogeneity and bounded isometries in manifolds of negative curvature”, Illinois J. Math., 8:4 (1964), 14–17 | MR

[2] S. Khelgason, Differentsialnaya geometriya i simmetricheskie prostranstva, izd-vo «Mir», Moskva, 1964

[3] A. Borel, “Sous-groupes compacts maximaux des groupes de Lie”, Séminaire Bourbaki, expose 33, 1950/51

[4] D. V. Alekseevskii, “Sopryazhennost polyarnykh razlozhenii grupp Li”, Matem. sb., 84 (126) (1971), 14–26 | MR | Zbl

[5] N. Dzhekobson, Algebry Li, izd-vo «Mir», Moskva, 1964 | MR

[6] A. I. Maltsev, “K teorii grupp Li v tselom”, Matem. sb., 16 (58) (1945), 163–190 | Zbl

[7] A. L. Onischik, “O gruppakh Li, tranzitivnykh na kompaktnykh mnogoobraziyakh”, Matem. sb., 71 (113) (1966), 483–494 ; 74 (116) (1967), 398–416 | Zbl | MR | Zbl

[8] J. Hano, “On Kählerian homogeneous spaces of unimodular groups”, Amer. J. Math., 79 (1957), 885–900 | DOI | MR | Zbl

[9] E. B. Vinberg, “Invariantnye lineinye svyaznosti v odnorodnom prostranstve”, Trudy Mosk. Matem. ob-va, IX (1960), 191–210 | MR

[10] S. Kobayashi, K. Nomizu, Foundations of differential geometry, v. 1, 1963

[11] K. Nomizu, “On local and global existence of Killing vector fields”, Ann. Math., 72 (1960), 105–120 | DOI | MR | Zbl

[12] Block, “On the extensions of Lie algebras”, Canad. Math. J., 20 (1968), 1439–1450 | MR | Zbl

[13] M. S. Raghunathan, Discrete subgroups of Lie groups, Springer-Verlag, Berlin, 1972 | MR | Zbl