An equivalent definition of $H^p$ spaces in~the half-plane and some applications
Sbornik. Mathematics, Tome 25 (1975) no. 1, pp. 69-76

Voir la notice de l'article provenant de la source Math-Net.Ru

Classes of functions that are holomorphic for $\operatorname{Im}z>0$ and satisfy $$ \sup_{0\pi}\int_0^\infty|f(re^{it})|^p\,dr\infty,\qquad p\in(0,\infty), $$ are considered. It is proved that they coincide with the usual classes $H^p$ in the half-plane. This result is applied to an interpolation problem in $H^p$ in a strip and to the problem of basicity of exponential functions in the space $L^2$ on the line, with exponentially decreasing weight. Bibliography: 8 titles.
@article{SM_1975_25_1_a3,
     author = {A. M. Sedletskii},
     title = {An equivalent definition of $H^p$ spaces in~the half-plane and some applications},
     journal = {Sbornik. Mathematics},
     pages = {69--76},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {1975},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1975_25_1_a3/}
}
TY  - JOUR
AU  - A. M. Sedletskii
TI  - An equivalent definition of $H^p$ spaces in~the half-plane and some applications
JO  - Sbornik. Mathematics
PY  - 1975
SP  - 69
EP  - 76
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1975_25_1_a3/
LA  - en
ID  - SM_1975_25_1_a3
ER  - 
%0 Journal Article
%A A. M. Sedletskii
%T An equivalent definition of $H^p$ spaces in~the half-plane and some applications
%J Sbornik. Mathematics
%D 1975
%P 69-76
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1975_25_1_a3/
%G en
%F SM_1975_25_1_a3
A. M. Sedletskii. An equivalent definition of $H^p$ spaces in~the half-plane and some applications. Sbornik. Mathematics, Tome 25 (1975) no. 1, pp. 69-76. http://geodesic.mathdoc.fr/item/SM_1975_25_1_a3/