An equivalent definition of $H^p$ spaces in~the half-plane and some applications
Sbornik. Mathematics, Tome 25 (1975) no. 1, pp. 69-76
Voir la notice de l'article provenant de la source Math-Net.Ru
Classes of functions that are holomorphic for $\operatorname{Im}z>0$ and satisfy
$$
\sup_{0\pi}\int_0^\infty|f(re^{it})|^p\,dr\infty,\qquad p\in(0,\infty),
$$
are considered. It is proved that they coincide with the usual classes $H^p$ in the half-plane. This result is applied to an interpolation problem in $H^p$ in a strip and to the problem of basicity of exponential functions in the space $L^2$ on the line, with exponentially decreasing weight.
Bibliography: 8 titles.
@article{SM_1975_25_1_a3,
author = {A. M. Sedletskii},
title = {An equivalent definition of $H^p$ spaces in~the half-plane and some applications},
journal = {Sbornik. Mathematics},
pages = {69--76},
publisher = {mathdoc},
volume = {25},
number = {1},
year = {1975},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1975_25_1_a3/}
}
A. M. Sedletskii. An equivalent definition of $H^p$ spaces in~the half-plane and some applications. Sbornik. Mathematics, Tome 25 (1975) no. 1, pp. 69-76. http://geodesic.mathdoc.fr/item/SM_1975_25_1_a3/