An equivalent definition of $H^p$ spaces in the half-plane and some applications
Sbornik. Mathematics, Tome 25 (1975) no. 1, pp. 69-76 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Classes of functions that are holomorphic for $\operatorname{Im}z>0$ and satisfy $$ \sup_{0<t<\pi}\int_0^\infty|f(re^{it})|^p\,dr<\infty,\qquad p\in(0,\infty), $$ are considered. It is proved that they coincide with the usual classes $H^p$ in the half-plane. This result is applied to an interpolation problem in $H^p$ in a strip and to the problem of basicity of exponential functions in the space $L^2$ on the line, with exponentially decreasing weight. Bibliography: 8 titles.
@article{SM_1975_25_1_a3,
     author = {A. M. Sedletskii},
     title = {An equivalent definition of $H^p$ spaces in~the half-plane and some applications},
     journal = {Sbornik. Mathematics},
     pages = {69--76},
     year = {1975},
     volume = {25},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1975_25_1_a3/}
}
TY  - JOUR
AU  - A. M. Sedletskii
TI  - An equivalent definition of $H^p$ spaces in the half-plane and some applications
JO  - Sbornik. Mathematics
PY  - 1975
SP  - 69
EP  - 76
VL  - 25
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1975_25_1_a3/
LA  - en
ID  - SM_1975_25_1_a3
ER  - 
%0 Journal Article
%A A. M. Sedletskii
%T An equivalent definition of $H^p$ spaces in the half-plane and some applications
%J Sbornik. Mathematics
%D 1975
%P 69-76
%V 25
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1975_25_1_a3/
%G en
%F SM_1975_25_1_a3
A. M. Sedletskii. An equivalent definition of $H^p$ spaces in the half-plane and some applications. Sbornik. Mathematics, Tome 25 (1975) no. 1, pp. 69-76. http://geodesic.mathdoc.fr/item/SM_1975_25_1_a3/

[1] V. I. Krylov, “O funktsiyakh, regulyarnykh v poluploskosti”, Matem. sb., 6 (48) (1939), 95–138

[2] P. L. Duren, Theory of $H^p$ spaces, New York, 1970 | MR

[3] K. Gofman, Banakhovy prostranstva analiticheskikh funktsii, IL, Moskva, 1963

[4] M. M. Dzhrbashyan, Integralnye preobrazovaniya i predstavleniya v kompleksnoi oblasti, izd-vo «Nauka», Moskva, 1966

[5] E. Titchmarsh, Vvedenie v teoriyu integralov Fure, Gostekhizdat, Moskva, 1948

[6] H. S. Shapiro, A. L. Shields, “On some interpolation problems for analytic functions”, Amer. J. Math., 83 (1961), 513–532 | DOI | MR | Zbl

[7] A. M. Sedletskii, “Interpolyatsiya v prostranstvakh $H^p$ v poluploskosti”, DAN SSSR, 208:6 (1973), 1293–1295

[8] M. Plancherel, G. Pólya, “Fonctions entières et integrales de Fourier multiples”, Comm. math. Helv., 10:2 (1938), 110–163 | MR