A compact Hausdorff space all of whose infinite closed subsets are $n$-dimensional
Sbornik. Mathematics, Tome 25 (1975) no. 1, pp. 37-57 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is proved that for every $n$ there exists an $n$-dimensional bicompactum (= compact Hausdorff space) with first axiom of countability, such that every closed subset $F$ has either $\dim F\leqslant0$ or $\dim_GF=n$, where $G$ is an arbitrary nonzero Abelian group. The main result is the construction, for every $n\geqslant1$, assuming the continuum hypothesis, of an $n$-dimensional bicompactum of which every closed subset is either finite or $n$-dimensional. Bibliography: 12 titles.
@article{SM_1975_25_1_a1,
     author = {V. V. Fedorchuk},
     title = {A compact {Hausdorff} space all of~whose infinite closed subsets are $n$-dimensional},
     journal = {Sbornik. Mathematics},
     pages = {37--57},
     year = {1975},
     volume = {25},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1975_25_1_a1/}
}
TY  - JOUR
AU  - V. V. Fedorchuk
TI  - A compact Hausdorff space all of whose infinite closed subsets are $n$-dimensional
JO  - Sbornik. Mathematics
PY  - 1975
SP  - 37
EP  - 57
VL  - 25
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1975_25_1_a1/
LA  - en
ID  - SM_1975_25_1_a1
ER  - 
%0 Journal Article
%A V. V. Fedorchuk
%T A compact Hausdorff space all of whose infinite closed subsets are $n$-dimensional
%J Sbornik. Mathematics
%D 1975
%P 37-57
%V 25
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1975_25_1_a1/
%G en
%F SM_1975_25_1_a1
V. V. Fedorchuk. A compact Hausdorff space all of whose infinite closed subsets are $n$-dimensional. Sbornik. Mathematics, Tome 25 (1975) no. 1, pp. 37-57. http://geodesic.mathdoc.fr/item/SM_1975_25_1_a1/

[1] P. S. Aleksandrov, B. A. Pasynkov, Vvedenie v teoriyu razmernosti, izd-vo «Nauka», Moskva, 1973 | MR

[2] D. W. Henderson, “An infinite-dimensional compactum with no positive-dimensional compact subsets—a simpler constuction”, Amer. J. Math., 89:1 (1967), 105–121 | DOI | MR | Zbl

[3] W. Hurewicz, “Une remarque sur l'hypothèse du continu”, Fundam. Math., 19 (1932), 8–9 | Zbl

[4] B. A. Efimov, “O vlozhenii stoun-chekhovskikh kompaktifikatsii diskretnykh prostranstv v bikompakty”, DAN SSSR, 189:2 (1969), 244–246 | MR | Zbl

[5] V. I. Kuzminov, “Gomologicheskaya teoriya razmernosti”, Uspekhi matem. nauk, XXIII:5 (143) (1968), 3–49 | MR

[6] L. S. Pontryagin, Nepreryvnye gruppy, izd-vo «Nauka», Moskva, 1973 | MR

[7] E. G. Sklyarenko, “O nekotorykh prilozheniyakh teorii puchkov v obschei topologii”, Uspekhi matem. nauk, XIX:6 (120) (1964), 47–70

[8] L. A. Tumarkin, “O silno i slabo-beskonechnomernykh prostranstvakh”, Vestnik MGU, seriya matem. mekhan., 1963, no. 5, 24–27 | MR | Zbl

[9] V. V. Fedorchuk, “O bikompaktakh s nesovpadayuschimi razmernostyami”, DAN SSSR, 182:2 (1968), 275–277 | Zbl

[10] V. V. Fedorchuk, “Ob otobrazheniyakh, ne ponizhayuschikh razmernost”, DAN SSSR, 185:1 (1969), 54–57 | Zbl

[11] V. V. Fedorchuk, “Silno zamknutye otobrazheniya”, DAN SSSR, 187:1 (1969), 47–49 | MR | Zbl

[12] V. V. Fedorchuk, “Bikompakty bez promezhutochnykh razmernostei”, DAN SSSR, 213:4 (1973), 796–797