Dirichlet series with independent exponents and some of their applications
Sbornik. Mathematics, Tome 25 (1975) no. 1, pp. 1-36 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper the methods of probability theory are used to prove a number of theorems on the behavior of Dirichlet series with independent exponents. The results so obtained are applied to the theory of the $\zeta$-function and to the behavior of the solution of the wave equation as $t\to\infty$. Bibliography: 25 titles.
@article{SM_1975_25_1_a0,
     author = {E. M. Nikishin},
     title = {Dirichlet series with independent exponents and some of~their applications},
     journal = {Sbornik. Mathematics},
     pages = {1--36},
     year = {1975},
     volume = {25},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1975_25_1_a0/}
}
TY  - JOUR
AU  - E. M. Nikishin
TI  - Dirichlet series with independent exponents and some of their applications
JO  - Sbornik. Mathematics
PY  - 1975
SP  - 1
EP  - 36
VL  - 25
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1975_25_1_a0/
LA  - en
ID  - SM_1975_25_1_a0
ER  - 
%0 Journal Article
%A E. M. Nikishin
%T Dirichlet series with independent exponents and some of their applications
%J Sbornik. Mathematics
%D 1975
%P 1-36
%V 25
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1975_25_1_a0/
%G en
%F SM_1975_25_1_a0
E. M. Nikishin. Dirichlet series with independent exponents and some of their applications. Sbornik. Mathematics, Tome 25 (1975) no. 1, pp. 1-36. http://geodesic.mathdoc.fr/item/SM_1975_25_1_a0/

[1] H. Bohr, E. Landau, “Über das Verhalten von $\zeta(s)$ und $\zeta_{\mathfrak{R}}(s)$ in der Nähe der Geraden $\sigma=1$”, Göttinger Nachrichten, 1910, 303–330 | Zbl

[2] E. K. Titchmarsh, Dzeta-funktsiya Rimana, IL, Moskva, 1947

[3] M. Kats, Statisticheskaya nezavisimost v teorii veroyatnostei, analize i teorii chisel, IL, Moskva, 1963

[4] A. Wintner, P. Hartman, E. R. van Kampen, “On the distribution functions of almost periodic functions”, Amer. J. Math., 60:2 (1938), 491–500 | DOI | MR | Zbl

[5] R. Kershner, A. Wintner, “On the asymptotic distribution on almost periodic functions with linearly independent frequencies”, Amer. J. Math., 58 (1936), 91–94 | DOI | MR | Zbl

[6] H. Bohr, “Zur Theorie der fastperiodischen Functionen. I, II, III”, Acta Math., 45 (1924) ; 46 (1925) ; 47 (1926) | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[7] A. Besicovitch, H. Bohr, “Almost periodicity and generalised trigonometric series”, Acta Math., 57 (1931), 203–292 | DOI | MR | Zbl

[8] A. Besicovitch, Almost periodic functions, Cambridge, 1932

[9] B. M. Levitan, Pochti periodicheskie funktsii, Gostekhizdat, Moskva, 1953

[10] M. Loev, Teoriya veroyatnostei, IL, Moskva, 1962

[11] N. K. Bari, Trigonometricheskie ryady, Fizmatgiz, Moskva, 1961 | MR

[12] K. Prakhar, Raspredelenie prostykh chisel, izd-vo «Mir», Moskva, 1967 | MR

[13] G. N. Vatson, Teoriya besselevykh funktsii, ch. I, IL, Moskva, 1949

[14] E. M. Nikishin, “Ob odnom svoistve summ nezavisimykh velichin”, Matem. zametki, 16:5 (1974), 703–706 | MR | Zbl

[15] Yu. V. Linnik, I. V. Ostrovskii, Razlozheniya sluchainykh velichin i vektorov, izd-vo «Nauka», Moskva, 1972 | MR

[16] S. M. Nikolskii, Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, izd-vo «Nauka», Moskva, 1969 | MR

[17] S. L. Sobolev, Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, izd-vo Sib. otd. AN SSSR, Novosibirsk, 1962

[18] V. A. Ilin, “Dostatochnye usloviya razlozhimosti funktsii v absolyutno i ravnomerno skhodyaschiisya ryad po sobstvennym funktsiyam”, Matem. sb., 45(87) (1958), 195–232

[19] S. Wainger, “Special trigonometric series in $k$ dimensions”, Amer. Math. Soc. Mem., 59 (1965), 1–102 | MR

[20] E. Ch. Titchmarsh, Razlozheniya po sobstvennym funktsiyam, svyazannye s differentsialnymi uravneniyami vtorogo poryadka, ch. II, IL, Moskva, 1961

[21] Khua-Lo-gen, Metod trigonometricheskikh summ i ego primeneniya v teorii chisel, izd-vo «Mir», Moskva, 1964 | MR

[22] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, izd-vo «Nauka», Moskva, 1967 | MR

[23] K. Chandrasekhran, Arithmetical Functions, Springer-Verlag, Berlin-Heidelberg-New Jork, 1970

[24] S. Kachmazh, G. Shteingauz, Teoriya ortogonalnykh ryadov, Fizmatgiz, Moskva, 1958

[25] A. Z. Valfish, “O predstavlenii chisel summami kvadratov. Asimptoticheskie formuly”, Uspekhi matem. nauk, VII:6 (52) (1952), 97–178