Two-level Bernsteinian populations
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 24 (1974) no. 4, pp. 593-615
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this article we give a partial solution to Bernstein's problem concerning quadratic mappings of a simplex into itself: the description of all those mappings $V$ satisfying the condition $V^2=V$. The formulation of this question is connected with mathematical genetics. In this article, the selected class of mappings is characterized by the existence of linear preservation laws sufficient for the parametrization of a mapping. In genetic terms, this means the existence of genes (but, generally speaking, with a more complex behavior than in classical genetics). This article describes all these mappings.
Bibliography: 8 titles.
			
            
            
            
          
        
      @article{SM_1974_24_4_a7,
     author = {Yu. I. Lyubich},
     title = {Two-level {Bernsteinian} populations},
     journal = {Sbornik. Mathematics},
     pages = {593--615},
     publisher = {mathdoc},
     volume = {24},
     number = {4},
     year = {1974},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1974_24_4_a7/}
}
                      
                      
                    Yu. I. Lyubich. Two-level Bernsteinian populations. Sbornik. Mathematics, Tome 24 (1974) no. 4, pp. 593-615. http://geodesic.mathdoc.fr/item/SM_1974_24_4_a7/
