Asymptotic expansion of moment functions of solutions of nonlinear parabolic equations
Sbornik. Mathematics, Tome 24 (1974) no. 4, pp. 575-591 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $ v(t,\xi)$ be the Fourier coefficients of the solution of the Cauchy problem for a nonlinear parabolic equation of the form $$ \frac{\partial u}{\partial t}=-A(D)u+f(u,D^\gamma u),\qquad|\gamma|\leqslant m, $$ where $A(D)$ is a linear elliptic operator of order $m$ and $f(u,D^\gamma u)$ is the nonlinear part of the equation. Then $M(t,\xi_1,\dots,\xi_k,\sigma)$ are the moment functions of the equation, i.e. the average of the function $v(t,\xi_1)\cdots v(t,\xi_k)$ with respect to a probability measure $\mu_\sigma$, where $\sigma$ characterizes the degree of concentration of the measure. In this paper we give an asymptotic expansion for the functions $M(t,\xi_1,\dots,\xi_k,\sigma)$ as $\sigma\to0$. Bibliography: 8 titles.
@article{SM_1974_24_4_a6,
     author = {M. I. Vishik and A. V. Fursikov},
     title = {Asymptotic expansion of moment functions of solutions of nonlinear parabolic equations},
     journal = {Sbornik. Mathematics},
     pages = {575--591},
     year = {1974},
     volume = {24},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1974_24_4_a6/}
}
TY  - JOUR
AU  - M. I. Vishik
AU  - A. V. Fursikov
TI  - Asymptotic expansion of moment functions of solutions of nonlinear parabolic equations
JO  - Sbornik. Mathematics
PY  - 1974
SP  - 575
EP  - 591
VL  - 24
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1974_24_4_a6/
LA  - en
ID  - SM_1974_24_4_a6
ER  - 
%0 Journal Article
%A M. I. Vishik
%A A. V. Fursikov
%T Asymptotic expansion of moment functions of solutions of nonlinear parabolic equations
%J Sbornik. Mathematics
%D 1974
%P 575-591
%V 24
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1974_24_4_a6/
%G en
%F SM_1974_24_4_a6
M. I. Vishik; A. V. Fursikov. Asymptotic expansion of moment functions of solutions of nonlinear parabolic equations. Sbornik. Mathematics, Tome 24 (1974) no. 4, pp. 575-591. http://geodesic.mathdoc.fr/item/SM_1974_24_4_a6/

[1] M. I. Vishik, A. V. Fursikov, “Analiticheskie pervye integraly nelineinykh parabolicheskikh v smysle I. G. Petrovskogo sistem differentsialnykh uravnenii i ikh prilozheniya”, Uspekhi matem. nauk, XXIX:2(176) (1974), 123–153

[2] M. Rosenblatt, “Remarks on the Burgers equation”, J. of math. physics, 9:7 (1968), 1129–1136 | DOI | MR | Zbl

[3] Yu. M. Berezanskii, Razlozhenie po sobstvennym funktsiyam samosopryazhennykh operatorov, izd-vo «Naukova dumka», Kiev, 1965 | MR

[4] M. I. Vishik, “O razreshimosti kraevykh zadach dlya kvazilineinykh parabolicheskikh uravnenii vysshikh poryadkov”, Matem. sb., 59 (101) (1962), 289–325 | Zbl

[5] O. A. Ladyzhenskaya, Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, izd-vo «Nauka», Moskva, 1970 | MR

[6] Zh.-L. Lions, Nekotorye metody resheniya nelineinykh kraevykh zadach, izd-vo «Mir», Moskva, 1972 | MR

[7] R. A. Minlos, “Obobschennye sluchainye protsessy i ikh prodolzhenie do mery”, Trudy Mosk. matem. ob-va, VIII (1959), 497–518 | MR

[8] A. S. Monin, A. M. Yaglom, Statisticheskaya gidromekhanika, izd-vo «Nauka», Moskva, 1966