Magnus varieties in group representations
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 24 (1974) no. 4, pp. 487-510
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We consider varieties of pairs $(A,\Gamma)$, where $A$ is an Abelian group and $\Gamma$ is a group acting in $A$ as a group of automorphisms. In the semigroup of all such varieties we distinguish certain subsemigroups. If $\Theta$ is a group variety, we denote by $\omega'\Theta=\mathfrak X$ the variety of pairs $(A,\Gamma)$ such that if $(A,\overline\Gamma)$ is the corresponding faithful pair, then its corresponding semidirect product $A\leftthreetimes\overline\Gamma$ belongs to $\Theta$. We obtain a number of results concerning the operator $\omega'$. A pair $(A,\Gamma)$ is called a Magnus pair if its lower stable series reaches zero at the first limit place and all factors of this series are free Abelian groups. A variety $\mathfrak X$ of pairs is a Magnus variety if all of its free pairs are Magnus pairs. We prove that if $\Theta$ is a polynilpotent group variety, then $\omega'\Theta$ is a Magnus variety.
Bibliography: 17 titles.
			
            
            
            
          
        
      @article{SM_1974_24_4_a2,
     author = {L. E. Krop and B. I. Plotkin},
     title = {Magnus varieties in group representations},
     journal = {Sbornik. Mathematics},
     pages = {487--510},
     publisher = {mathdoc},
     volume = {24},
     number = {4},
     year = {1974},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1974_24_4_a2/}
}
                      
                      
                    L. E. Krop; B. I. Plotkin. Magnus varieties in group representations. Sbornik. Mathematics, Tome 24 (1974) no. 4, pp. 487-510. http://geodesic.mathdoc.fr/item/SM_1974_24_4_a2/
