Magnus varieties in group representations
Sbornik. Mathematics, Tome 24 (1974) no. 4, pp. 487-510 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider varieties of pairs $(A,\Gamma)$, where $A$ is an Abelian group and $\Gamma$ is a group acting in $A$ as a group of automorphisms. In the semigroup of all such varieties we distinguish certain subsemigroups. If $\Theta$ is a group variety, we denote by $\omega'\Theta=\mathfrak X$ the variety of pairs $(A,\Gamma)$ such that if $(A,\overline\Gamma)$ is the corresponding faithful pair, then its corresponding semidirect product $A\leftthreetimes\overline\Gamma$ belongs to $\Theta$. We obtain a number of results concerning the operator $\omega'$. A pair $(A,\Gamma)$ is called a Magnus pair if its lower stable series reaches zero at the first limit place and all factors of this series are free Abelian groups. A variety $\mathfrak X$ of pairs is a Magnus variety if all of its free pairs are Magnus pairs. We prove that if $\Theta$ is a polynilpotent group variety, then $\omega'\Theta$ is a Magnus variety. Bibliography: 17 titles.
@article{SM_1974_24_4_a2,
     author = {L. E. Krop and B. I. Plotkin},
     title = {Magnus varieties in group representations},
     journal = {Sbornik. Mathematics},
     pages = {487--510},
     year = {1974},
     volume = {24},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1974_24_4_a2/}
}
TY  - JOUR
AU  - L. E. Krop
AU  - B. I. Plotkin
TI  - Magnus varieties in group representations
JO  - Sbornik. Mathematics
PY  - 1974
SP  - 487
EP  - 510
VL  - 24
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1974_24_4_a2/
LA  - en
ID  - SM_1974_24_4_a2
ER  - 
%0 Journal Article
%A L. E. Krop
%A B. I. Plotkin
%T Magnus varieties in group representations
%J Sbornik. Mathematics
%D 1974
%P 487-510
%V 24
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1974_24_4_a2/
%G en
%F SM_1974_24_4_a2
L. E. Krop; B. I. Plotkin. Magnus varieties in group representations. Sbornik. Mathematics, Tome 24 (1974) no. 4, pp. 487-510. http://geodesic.mathdoc.fr/item/SM_1974_24_4_a2/

[1] B. I. Plotkin, “Radikaly i mnogoobraziya v predstavleniyakh grupp”, Latv. matem. ezhegodnik, 1971, no. 10, 75–132

[2] B. Hartley, “The residual nilpotence of wreath products”, Proc. London Math. Soc., 20:3 (1970), 365–392 | DOI | MR | Zbl

[3] B. I. Plotkin, A. S. Grinberg, “O polugruppakh mnogoobrazii, svyazannykh s predstavleniyami grupp”, Sib. matem. zh., 13:4 (1972), 841–858 | MR | Zbl

[4] B. I. Plotkin, “Multiplikativnye sistemy mnogoobrazii par - predstavlenii grupp”, Latv. matem. ezhegodnik, 18 (1974), 70–110

[5] B. I. Plotkin, “Gruppovye mnogoobraziya i mnogoobraziya par, svyazannykh s predstavleniyami grupp”, Sib. matem. zh., 13:5 (1972), 1030–1053 | MR | Zbl

[6] B. I. Plotkin, Gruppy avtomorfizmov algebraicheskikh sistem, izd-vo «Nauka», Moskva, 1966 | MR

[7] A. L. Shmelkin, “Spleteniya algebr Li i ikh primeneniya v teorii grupp”, Trudy Mosk. matem. ob-va, XXIX (1973), 247–260

[8] B. I. Plotkin, “Treugolnye proizvedeniya par”, Trudy rizhskogo algebr. seminara, 1971, no. 2, 140–170 | MR

[9] L. Fuchs, Abelian groups, Budapest, 1958 | MR

[10] B. I. Plotkin, “Mnogoobraziya i kvazimnogoobraziya, svyazannye s predstavleniyami grupp”, DAN SSSR, 196:3 (1971), 527–530 | MR | Zbl

[11] E. M. Kublanova, “Razmernye podgruppy i ikh obobscheniya”, Sib. matem. zh., 12:3 (1971), 554–561 | MR | Zbl

[12] E. M. Kublanova, “Ob odnom uravnenii v mnogoobraziyakh par”, 12-i vsesoyuznyi algebr. kollokvium, Tezisy soobschenii, no. 1, 29

[13] A. I. Maltsev, “O nekotorykh klassakh beskonechnykh razreshimykh grupp”, Matem. sb., 28 (70) (1961), 567–588 | MR

[14] G. Higman, “Some remarks on varieties of groups”, Quart. J. Math., 2:10 (1959), 165–178 | DOI | MR

[15] A. Yu. Olshanskii, “Razreshimye pochti krossovy mnogoobraziya grupp”, Matem. sb., 85(127) (1971), 115–130

[16] F. Kholl, “Nilpotentnye gruppy”, Matematika, 12:1 (1968), 3–36 | MR

[17] Yu. M. Gorchakov, “Multinilpotentnye gruppy”, Algebra i logika, 6:3 (1967), 13–31 | MR