Isogenies of Abelian varieties over fields of finite characteristic
Sbornik. Mathematics, Tome 24 (1974) no. 3, pp. 451-461
Cet article a éte moissonné depuis la source Math-Net.Ru
It is proved that Tate's finiteness conjecture for isogenies of Abelian varieties over fields of characteristic other than 2 can be formally deduced from the conjecture on the resolution of singularities. Bibliography: 4 titles.
@article{SM_1974_24_3_a6,
author = {Yu. G. Zarhin},
title = {Isogenies of {Abelian} varieties over fields of finite characteristic},
journal = {Sbornik. Mathematics},
pages = {451--461},
year = {1974},
volume = {24},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1974_24_3_a6/}
}
Yu. G. Zarhin. Isogenies of Abelian varieties over fields of finite characteristic. Sbornik. Mathematics, Tome 24 (1974) no. 3, pp. 451-461. http://geodesic.mathdoc.fr/item/SM_1974_24_3_a6/
[1] Yu. G. Zarkhin, “Teorema konechnosti dlya izogenii abelevykh mnogoobrazii nad polyami konechnoi kharakteristiki”, Funkts. analiz, 8:4 (1974), 31–34 | MR | Zbl
[2] D. Mamford, Abelevy mnogoobraziya, izd-vo «Mir», Moskva, 1971
[3] D. Mumford, “On the equations defining abelian varieties”, Invent. Math., 1 (1966), 287–354 ; 3 (1967), 75–135 ; Matematika, 14:1 (1970) ; 14:2 (1970); 14:5 (1970) | DOI | MR | Zbl | DOI | MR | MR | MR
[4] Zh. L. Serr, Kogomologii Galua, izd-vo «Mir», Moskva, 1968 | MR