Estimates from below of polynomials in the values of analytic functions of a certain class
Sbornik. Mathematics, Tome 24 (1974) no. 3, pp. 385-407 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Estimates from below are obtained for polynomials with integral coefficients in the values of certain Siegel $G$-functions at the algebraic points of a special form. In particular, it is proved that if $\alpha_1,\dots,\alpha_s$ ($\alpha_1\cdots\alpha_s\ne0$) are pairwise distinct algebraic numbers, $q$ is a natural number, and $P(x_1,\dots,x_s)\not\equiv0$ is a polynomial with integral coefficients of degree not greater than $d$ and height not exceeding $H$, then for $q>q_0(d,\alpha_1,\dots,\alpha_s)$ we have $$\Bigl|P\Bigl(\ln\Bigl(1+\frac{\alpha_1}q\Bigr),\dots,\ln\Bigl(1+\frac{\alpha_s}q\Bigr)\Bigr)\Bigr|>q^{-\lambda}H^{-\mu}, $$ where the constants $q_0$ and $\mu$ can be effectively computed. Bibliography: 17 titles.
@article{SM_1974_24_3_a3,
     author = {A. I. Galochkin},
     title = {Estimates from below of polynomials in the values of analytic functions of a~certain class},
     journal = {Sbornik. Mathematics},
     pages = {385--407},
     year = {1974},
     volume = {24},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1974_24_3_a3/}
}
TY  - JOUR
AU  - A. I. Galochkin
TI  - Estimates from below of polynomials in the values of analytic functions of a certain class
JO  - Sbornik. Mathematics
PY  - 1974
SP  - 385
EP  - 407
VL  - 24
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1974_24_3_a3/
LA  - en
ID  - SM_1974_24_3_a3
ER  - 
%0 Journal Article
%A A. I. Galochkin
%T Estimates from below of polynomials in the values of analytic functions of a certain class
%J Sbornik. Mathematics
%D 1974
%P 385-407
%V 24
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1974_24_3_a3/
%G en
%F SM_1974_24_3_a3
A. I. Galochkin. Estimates from below of polynomials in the values of analytic functions of a certain class. Sbornik. Mathematics, Tome 24 (1974) no. 3, pp. 385-407. http://geodesic.mathdoc.fr/item/SM_1974_24_3_a3/

[1] C. L. Siegel, “Über einige Anwendungen Diophantische Approximationen”, Abhandel. preuss. Acad. Wiss., 1929, no. 1, 1–70 | Zbl

[2] N. I. Feldman, A. B. Shidlovskii, “Razvitie i sovremennoe sostoyanie teorii transtsendentnykh chisel”, Uspekhi matem. nauk, XXII:3 (135) (1967), 3–81

[3] M. S. Nurmagomedov, “Ob arifmeticheskikh svoistvakh odnogo klassa analiticheskikh funktsii”, Matem. sb., 85 (127) (1971), 339–365 | MR | Zbl

[4] M. S. Nurmagomedov, “Ob arifmeticheskikh svoistvakh znachenii $G$-funktsii”, Vestnik MGU, seriya matem. i mekh., 1971, no. 6, 79–86 | MR | Zbl

[5] K. Mahler, “Zur Approximation der Exponentialfunktion und des Logarithmus. I, II”, J. reine und angew. Math., 166 (1932), 118–150

[6] K. Mahler, “On the approximation of logarithms of algebraic numbers”, Phil. Trans. Royal Soc. London, A245, 1953, no. 898, 371–398 | DOI | MR | Zbl

[7] A. Baker, “Linear forms in the logarithms of algebraic numbers”, Math., 13:26 (1966), 204–216 | MR | Zbl

[8] A. Baker, “Approximations to the logarithms of the certain rational numbers”, Acta Arithm., 10 (1964), 315–323 | MR | Zbl

[9] N. I. Feldman, “Ob otsenke modulya lineinoi formy ot logarifmov nekotorykh algebraicheskikh chisel”, Matem. zametki, 2:3 (1967), 245–256 | MR

[10] N. I. Feldman, “Uluchshenie otsenki lineinoi formy ot logarifmov algebraicheskikh chisel”, Matem. sb., 77 (119) (1968), 423–436 | MR

[11] A. Baker, “Simultaneous rational approximations to certain algebraic numbers”, Proc. Camb. Phil. Soc., 63 (1967), 693–702 | DOI | MR | Zbl

[12] N. I. Feldman, “Otsenka nepolnoi lineinoi formy ot nekotorykh algebraicheskikh chisel”, Matem. zametki, 7:5 (1970), 569–580

[13] A. B. Shidlovskii, “O kriterii algebraicheskoi nezavisimosti znachenii odnogo klassa tselykh funktsii”, Izv. An SSSR, seriya matem., 23 (1959), 35–66 | Zbl

[14] A. O. Gelfond, Transtsendentnye i algebraicheskie chisla, Gostekhizdat, Moskva, 1952

[15] A. I. Markushevich, Teoriya analiticheskikh funktsii, t. 2, izd-vo «Nauka», Moskva, 1968

[16] A. Ostrowski, “Sur les relations algebriques entre les integrales indefinetes”, Acta Math., 78 (1946), 315–318 | DOI | MR | Zbl

[17] A. I. Galochkin, “Otsenki snizu mnogochlenov ot neskolkikh logarifmov algebraicheskikh chisel, blizkikh k edinitse”, Uspekhi matem. nauk, XXVIII:2(170) (1973), 235 | MR | Zbl