Estimates from below of polynomials in the values of analytic functions of a~certain class
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 24 (1974) no. 3, pp. 385-407
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Estimates from below are obtained for polynomials with integral coefficients in the values of certain Siegel $G$-functions at the algebraic points of a special form. In particular, it is proved that if $\alpha_1,\dots,\alpha_s$ ($\alpha_1\cdots\alpha_s\ne0$) are pairwise distinct algebraic numbers, $q$ is a natural number, and $P(x_1,\dots,x_s)\not\equiv0$ is a polynomial with integral coefficients of degree not greater than $d$ and height not exceeding $H$, then for $q>q_0(d,\alpha_1,\dots,\alpha_s)$ we have
$$\Bigl|P\Bigl(\ln\Bigl(1+\frac{\alpha_1}q\Bigr),\dots,\ln\Bigl(1+\frac{\alpha_s}q\Bigr)\Bigr)\Bigr|>q^{-\lambda}H^{-\mu},
$$
where the constants $q_0$ and $\mu$ can be effectively computed.
Bibliography: 17 titles.
			
            
            
            
          
        
      @article{SM_1974_24_3_a3,
     author = {A. I. Galochkin},
     title = {Estimates from below of polynomials in the values of analytic functions of a~certain class},
     journal = {Sbornik. Mathematics},
     pages = {385--407},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {1974},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1974_24_3_a3/}
}
                      
                      
                    A. I. Galochkin. Estimates from below of polynomials in the values of analytic functions of a~certain class. Sbornik. Mathematics, Tome 24 (1974) no. 3, pp. 385-407. http://geodesic.mathdoc.fr/item/SM_1974_24_3_a3/
