Estimates from below of polynomials in the values of analytic functions of a~certain class
Sbornik. Mathematics, Tome 24 (1974) no. 3, pp. 385-407

Voir la notice de l'article provenant de la source Math-Net.Ru

Estimates from below are obtained for polynomials with integral coefficients in the values of certain Siegel $G$-functions at the algebraic points of a special form. In particular, it is proved that if $\alpha_1,\dots,\alpha_s$ ($\alpha_1\cdots\alpha_s\ne0$) are pairwise distinct algebraic numbers, $q$ is a natural number, and $P(x_1,\dots,x_s)\not\equiv0$ is a polynomial with integral coefficients of degree not greater than $d$ and height not exceeding $H$, then for $q>q_0(d,\alpha_1,\dots,\alpha_s)$ we have $$\Bigl|P\Bigl(\ln\Bigl(1+\frac{\alpha_1}q\Bigr),\dots,\ln\Bigl(1+\frac{\alpha_s}q\Bigr)\Bigr)\Bigr|>q^{-\lambda}H^{-\mu}, $$ where the constants $q_0$ and $\mu$ can be effectively computed. Bibliography: 17 titles.
@article{SM_1974_24_3_a3,
     author = {A. I. Galochkin},
     title = {Estimates from below of polynomials in the values of analytic functions of a~certain class},
     journal = {Sbornik. Mathematics},
     pages = {385--407},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {1974},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1974_24_3_a3/}
}
TY  - JOUR
AU  - A. I. Galochkin
TI  - Estimates from below of polynomials in the values of analytic functions of a~certain class
JO  - Sbornik. Mathematics
PY  - 1974
SP  - 385
EP  - 407
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1974_24_3_a3/
LA  - en
ID  - SM_1974_24_3_a3
ER  - 
%0 Journal Article
%A A. I. Galochkin
%T Estimates from below of polynomials in the values of analytic functions of a~certain class
%J Sbornik. Mathematics
%D 1974
%P 385-407
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1974_24_3_a3/
%G en
%F SM_1974_24_3_a3
A. I. Galochkin. Estimates from below of polynomials in the values of analytic functions of a~certain class. Sbornik. Mathematics, Tome 24 (1974) no. 3, pp. 385-407. http://geodesic.mathdoc.fr/item/SM_1974_24_3_a3/