$p$-adic Hecke series of imaginary quadratic fields
Sbornik. Mathematics, Tome 24 (1974) no. 3, pp. 345-371 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper a $p$-adic analytic function of two variables is constructed whose values in some “common” domain coincide with the values of the family of Hecke $L$-series of an imaginary quadratic field. The functional equation for such a function is obtained. The $p$-adic Mellin integral transform is the main technique. Bibliography: 13 titles.
@article{SM_1974_24_3_a1,
     author = {M. M. Vishik and Yu. I. Manin},
     title = {$p$-adic {Hecke} series of imaginary quadratic fields},
     journal = {Sbornik. Mathematics},
     pages = {345--371},
     year = {1974},
     volume = {24},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1974_24_3_a1/}
}
TY  - JOUR
AU  - M. M. Vishik
AU  - Yu. I. Manin
TI  - $p$-adic Hecke series of imaginary quadratic fields
JO  - Sbornik. Mathematics
PY  - 1974
SP  - 345
EP  - 371
VL  - 24
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1974_24_3_a1/
LA  - en
ID  - SM_1974_24_3_a1
ER  - 
%0 Journal Article
%A M. M. Vishik
%A Yu. I. Manin
%T $p$-adic Hecke series of imaginary quadratic fields
%J Sbornik. Mathematics
%D 1974
%P 345-371
%V 24
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1974_24_3_a1/
%G en
%F SM_1974_24_3_a1
M. M. Vishik; Yu. I. Manin. $p$-adic Hecke series of imaginary quadratic fields. Sbornik. Mathematics, Tome 24 (1974) no. 3, pp. 345-371. http://geodesic.mathdoc.fr/item/SM_1974_24_3_a1/

[1] R. M. Damerell, “$L$-functions of elliptic curves with complex multiplication, I”, Acta Arithmetica, 17 (1970), 287–301 | MR | Zbl

[2] B. Dwork, “A deformation theory for the zeta function of a hypersurface”, Proc. Int. Congress of Math. Stockholm, Uppsala, 1963, 247–259 | MR | Zbl

[3] K. Iwasawa, “On $p$-adic $L$-functions”, Ann. Math., 89 (1960), 198–205 | DOI | MR

[4] K. Iwasawa, Lectures on $p$-adic $L$-functions, Ann. Math. Studies, 74, Princeton Univ. Press, 1972 | MR | Zbl

[5] T. Kubota, H. W. Leopoldt, “Eine $p$-adische Theorie der Zeta Werte”, J. reine und angew. Math., 214–215 (1964), 328–339 | MR | Zbl

[6] S. Lichtenbaum, “On the values of zeta and $p$-functions, I”, Ann. Math., 96 (1972), 338–360 | DOI | MR | Zbl

[7] J. Lubin, J. Tate, “Formal complex multiplication in local fields”, Ann. Math., 81 (1965), 380–387 ; Matematika, 12:1 (1968) | DOI | MR | Zbl

[8] Yu. I. Manin, “Periody parabolicheskikh form i $p$-adicheskie ryady Gekke”, Matem. sb., 92 (134) (1973), 376–401 | MR

[9] Yu. I. Manin, “Znacheniya $p$-adicheskikh ryadov Gekke v tselykh tochkakh kriticheskoi polosy”, Matem. sb., 93 (135) (1974), 621–626 | MR | Zbl

[10] B. Mazur, H. P. F. Swinnerton-Dyer, Arithmetic of Weil curves, preprint | MR

[11] A. Ogg, Modular forms and Dirichlet series, Benjamin, New York, 1969 | MR | Zbl

[12] J. P. Serre, Formes modulaires et fonctions zeta $p$-adiques, Lecture notes in Math., 350, Springer-Verlag, Berlin, 1973 | MR | Zbl

[13] G. Shimura, “On elliptic curves with complex multiplication as factors of the Jacobians of modular function fields”, Nagoya Math. J., 43 (1971), 199–208 ; Matematika, 17:4 (1973), 89–96 | MR | Zbl | MR | Zbl