$p$-adic Hecke series of imaginary quadratic fields
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 24 (1974) no. 3, pp. 345-371
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this paper a $p$-adic analytic function of two variables is constructed whose values in some “common” domain coincide with the values of the family of Hecke $L$-series of an imaginary quadratic field. The functional equation for such a function is obtained. The $p$-adic Mellin integral transform is the main technique.
Bibliography: 13 titles.
			
            
            
            
          
        
      @article{SM_1974_24_3_a1,
     author = {M. M. Vishik and Yu. I. Manin},
     title = {$p$-adic {Hecke} series of imaginary quadratic fields},
     journal = {Sbornik. Mathematics},
     pages = {345--371},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {1974},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1974_24_3_a1/}
}
                      
                      
                    M. M. Vishik; Yu. I. Manin. $p$-adic Hecke series of imaginary quadratic fields. Sbornik. Mathematics, Tome 24 (1974) no. 3, pp. 345-371. http://geodesic.mathdoc.fr/item/SM_1974_24_3_a1/
