The periodic Korteweg–de Vries problem
Sbornik. Mathematics, Tome 24 (1974) no. 3, pp. 319-344 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we give a method for solving the periodic Cauchy problem for the Korteweg–de Vries equation: \begin{gather*} v-6vv'+v'''=0,\qquad v(x,\,0)=v_0(x),\quad v(x+\pi,\,t)=v(x,\,t)\\ (-\infty<x<\infty,\quad-\infty<t<\infty). \end{gather*} We justify our method with the aid of the theory of inverse spectral problems for Sturm–Liouville operators, considered on a finite interval. Bibliography: 8 titles.
@article{SM_1974_24_3_a0,
     author = {V. A. Marchenko},
     title = {The periodic {Korteweg{\textendash}de~Vries} problem},
     journal = {Sbornik. Mathematics},
     pages = {319--344},
     year = {1974},
     volume = {24},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1974_24_3_a0/}
}
TY  - JOUR
AU  - V. A. Marchenko
TI  - The periodic Korteweg–de Vries problem
JO  - Sbornik. Mathematics
PY  - 1974
SP  - 319
EP  - 344
VL  - 24
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1974_24_3_a0/
LA  - en
ID  - SM_1974_24_3_a0
ER  - 
%0 Journal Article
%A V. A. Marchenko
%T The periodic Korteweg–de Vries problem
%J Sbornik. Mathematics
%D 1974
%P 319-344
%V 24
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1974_24_3_a0/
%G en
%F SM_1974_24_3_a0
V. A. Marchenko. The periodic Korteweg–de Vries problem. Sbornik. Mathematics, Tome 24 (1974) no. 3, pp. 319-344. http://geodesic.mathdoc.fr/item/SM_1974_24_3_a0/

[1] C. S. Gardner, I. M. Greene, M. D. Kruskal, R. M. Miura, “Method for solving the Korteweg-de Vries equation”, Phys. Rev. lett., 19 (1967), 1095–1097 | DOI | Zbl

[2] M. D. Kruskal, R. M. Miura, C. S. Gardner, N. J. Zabusky, “Korteweg - de Vries equation and generalizations. V: Uniqueness and nonexistence of polynomial conservation laws, I”, Math. Phys., 11:3 (1970), 952–960 | DOI | MR | Zbl

[3] P. D. Lax, “Integrals of nonlinear equations and solitary waves”, Comm. Pure Appl. Math., 21:2 (1968), 467–490 | DOI | MR | Zbl

[4] V. E. Zakharov, L. D. Faddeev, “Uravnenie Kortevega-de Frisa — vpolne integriruemaya gamiltonova sistema”, Funkts. analiz, 5:4 (1971), 18–27 | MR | Zbl

[5] V. A. Marchenko, “Periodicheskaya zadacha Kortevega-de Frisa”, DAN SSSR, 217:2 (1974), 276–279 | Zbl

[6] I. M. Gelfand, B. M. Levitan, “Ob opredelenii differentsialnogo uravneniya po ego spektralnoi funktsii”, Izv. AN SSSR, seriya matem., 15 (1951), 309–360 | MR | Zbl

[7] M. G. Gasymov, B. M. Levitan, “Opredelenie differentsialnogo operatora po dvum spektram”, Uspekhi matem. nauk, XIX:2 (116) (1964), 3–63 | MR

[8] S. P. Novikov, “Periodicheskaya zadacha dlya uravneniya Kortevega-de Frisa, I”, Funkts. analiz, 8:3 (1974), 54–66 | MR | Zbl