Spectral properties of generalized Toeplitz matrices
Sbornik. Mathematics, Tome 24 (1974) no. 2, pp. 299-317

Voir la notice de l'article provenant de la source Math-Net.Ru

The asymptotic behavior of $N_n(\lambda)$, the number of eigenvalues less than $\lambda$, as $n\to\infty$ is found for a sequence of generalized Toeplitz operators $A_n$, along with the asymptotic behavior of $\operatorname{det}A_n$. It is shown that both asymptotic formulas are quasiclassical and connected with the quantization of classical mechanics whose phase spaces are products of two-dimensional spheres. Bibliography: 12 titles.
@article{SM_1974_24_2_a6,
     author = {F. A. Berezin},
     title = {Spectral properties of generalized {Toeplitz} matrices},
     journal = {Sbornik. Mathematics},
     pages = {299--317},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {1974},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1974_24_2_a6/}
}
TY  - JOUR
AU  - F. A. Berezin
TI  - Spectral properties of generalized Toeplitz matrices
JO  - Sbornik. Mathematics
PY  - 1974
SP  - 299
EP  - 317
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1974_24_2_a6/
LA  - en
ID  - SM_1974_24_2_a6
ER  - 
%0 Journal Article
%A F. A. Berezin
%T Spectral properties of generalized Toeplitz matrices
%J Sbornik. Mathematics
%D 1974
%P 299-317
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1974_24_2_a6/
%G en
%F SM_1974_24_2_a6
F. A. Berezin. Spectral properties of generalized Toeplitz matrices. Sbornik. Mathematics, Tome 24 (1974) no. 2, pp. 299-317. http://geodesic.mathdoc.fr/item/SM_1974_24_2_a6/