Spectral properties of generalized Toeplitz matrices
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 24 (1974) no. 2, pp. 299-317
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The asymptotic behavior of $N_n(\lambda)$, the number of eigenvalues less than $\lambda$, as $n\to\infty$ is found for a sequence of generalized Toeplitz operators $A_n$, along with the asymptotic behavior of $\operatorname{det}A_n$. It is shown that both asymptotic formulas are quasiclassical and connected with the quantization of classical mechanics whose phase spaces are products of two-dimensional spheres.
Bibliography: 12 titles.
			
            
            
            
          
        
      @article{SM_1974_24_2_a6,
     author = {F. A. Berezin},
     title = {Spectral properties of generalized {Toeplitz} matrices},
     journal = {Sbornik. Mathematics},
     pages = {299--317},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {1974},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1974_24_2_a6/}
}
                      
                      
                    F. A. Berezin. Spectral properties of generalized Toeplitz matrices. Sbornik. Mathematics, Tome 24 (1974) no. 2, pp. 299-317. http://geodesic.mathdoc.fr/item/SM_1974_24_2_a6/
