Spectral properties of generalized Toeplitz matrices
Sbornik. Mathematics, Tome 24 (1974) no. 2, pp. 299-317 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The asymptotic behavior of $N_n(\lambda)$, the number of eigenvalues less than $\lambda$, as $n\to\infty$ is found for a sequence of generalized Toeplitz operators $A_n$, along with the asymptotic behavior of $\operatorname{det}A_n$. It is shown that both asymptotic formulas are quasiclassical and connected with the quantization of classical mechanics whose phase spaces are products of two-dimensional spheres. Bibliography: 12 titles.
@article{SM_1974_24_2_a6,
     author = {F. A. Berezin},
     title = {Spectral properties of generalized {Toeplitz} matrices},
     journal = {Sbornik. Mathematics},
     pages = {299--317},
     year = {1974},
     volume = {24},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1974_24_2_a6/}
}
TY  - JOUR
AU  - F. A. Berezin
TI  - Spectral properties of generalized Toeplitz matrices
JO  - Sbornik. Mathematics
PY  - 1974
SP  - 299
EP  - 317
VL  - 24
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1974_24_2_a6/
LA  - en
ID  - SM_1974_24_2_a6
ER  - 
%0 Journal Article
%A F. A. Berezin
%T Spectral properties of generalized Toeplitz matrices
%J Sbornik. Mathematics
%D 1974
%P 299-317
%V 24
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1974_24_2_a6/
%G en
%F SM_1974_24_2_a6
F. A. Berezin. Spectral properties of generalized Toeplitz matrices. Sbornik. Mathematics, Tome 24 (1974) no. 2, pp. 299-317. http://geodesic.mathdoc.fr/item/SM_1974_24_2_a6/

[1] M. Kac, W. L. Murdock, G. Szegö, “On eigenvalues of certain Hermitian forms”, J. Rat. Mech., 2 (1953), 767–800 | MR | Zbl

[2] L. S. Mejlbo, P. F. Schmidt, “On the eigenvalues of generalized Toeplitz matrices”, Bull. Amer. Math. Soc., 67:1 (1961), 159–162 | DOI | MR | Zbl

[3] L. S. Mejlbo, P. F. Schmidt, “On the eigenvalues of generalized Toeplitz matrices”, Math. Scand., 10 (1962), 5–16 | MR | Zbl

[4] M. Kac, “Asymptotic behaviour of a class of determinants”, Enseign. Math. Ser. 2, 15 (1969), 177–183 | MR | Zbl

[5] F. A. Berezin, “Kvantovanie v ogranichennykh kompleksnykh oblastyakh”, DAN SSSR, 211:6 (1973), 1263–1266 | MR | Zbl

[6] F. A. Berezin, General concept of Quantization, Preprint TP-74-20E, Kiev, 1974 | MR

[7] F. A. Berezin, “Kovariantnye i kontravariantnye simvoly operatorov”, Izv. AN SSSR, seriya matem., 36 (1972), 1134–1167 | MR | Zbl

[8] F. A. Berezin, “Ob odnom predstavlenii operatorov s pomoschyu funktsionalov”, Trudy Mosk. matem. ob-va, XVII (1967), 117–196 | MR

[9] A. O. Gelfond, Ischislenie konechnykh raznostei, Moskva, Moskva, 1952 | Zbl

[10] O. Kurant, D. Gilbert, Metody matematicheskoi fiziki, t. I, Gostekhizdat, Moskva, 1951

[11] Yu. L. Daletskii, S. G. Krein, “Integrirovanie i differentsirovanie funktsii ermitovykh operatorov”, Trudy seminara po funkts. analizu, 1, Voronezh, 1956, 81–106

[12] Godbiion K., Differentsialnaya geometriya i analiticheskaya mekhanika, izd-vo «Mir», Moskva, 1973