On a class of decompositions of semisimple Lie groups and algebras
Sbornik. Mathematics, Tome 24 (1974) no. 2, pp. 287-297 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $G$ be a semisimple Lie group, and $K$ a maximal compact subalgebra in $G$. In this paper we prove the existence of closed subgroups $G'\subset G$ such that $G'\cdot K=G$ and $G'\cap K=\{e\}$. Such subgroups are studied more explicitly in the case where $K$ is semisimple. Consideration of the infinitesimal analogue of the triple $(G,G',K)$ is basic. Bibliography: 3 titles.
@article{SM_1974_24_2_a5,
     author = {V. V. Gorbatsevich},
     title = {On a~class of decompositions of semisimple {Lie} groups and algebras},
     journal = {Sbornik. Mathematics},
     pages = {287--297},
     year = {1974},
     volume = {24},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1974_24_2_a5/}
}
TY  - JOUR
AU  - V. V. Gorbatsevich
TI  - On a class of decompositions of semisimple Lie groups and algebras
JO  - Sbornik. Mathematics
PY  - 1974
SP  - 287
EP  - 297
VL  - 24
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1974_24_2_a5/
LA  - en
ID  - SM_1974_24_2_a5
ER  - 
%0 Journal Article
%A V. V. Gorbatsevich
%T On a class of decompositions of semisimple Lie groups and algebras
%J Sbornik. Mathematics
%D 1974
%P 287-297
%V 24
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1974_24_2_a5/
%G en
%F SM_1974_24_2_a5
V. V. Gorbatsevich. On a class of decompositions of semisimple Lie groups and algebras. Sbornik. Mathematics, Tome 24 (1974) no. 2, pp. 287-297. http://geodesic.mathdoc.fr/item/SM_1974_24_2_a5/

[1] M. Goto, H. Wang, “Non discrete uniform subgroups of semisimple Lie groups”, Math. Ann., 198:4 (1972), 259–286 | DOI | MR | Zbl

[2] A. L. Onischik, “O gruppakh Li, tranzitivnykh na kompaktnykh mnogoobraziyakh, II”, Matem. sb., 74 (116) (1967), 398–416 | Zbl

[3] A. L. Onischik, “Razlozheniya reduktivnykh grupp Li”, Matem. sb., 80 (122) (1969), 553–599 | Zbl