On a class of decompositions of semisimple Lie groups and algebras
Sbornik. Mathematics, Tome 24 (1974) no. 2, pp. 287-297
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $G$ be a semisimple Lie group, and $K$ a maximal compact subalgebra in $G$. In this paper we prove the existence of closed subgroups $G'\subset G$ such that $G'\cdot K=G$ and $G'\cap K=\{e\}$. Such subgroups are studied more explicitly in the case where $K$ is semisimple. Consideration of the infinitesimal analogue of the triple $(G,G',K)$ is basic. Bibliography: 3 titles.
@article{SM_1974_24_2_a5,
author = {V. V. Gorbatsevich},
title = {On a~class of decompositions of semisimple {Lie} groups and algebras},
journal = {Sbornik. Mathematics},
pages = {287--297},
year = {1974},
volume = {24},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1974_24_2_a5/}
}
V. V. Gorbatsevich. On a class of decompositions of semisimple Lie groups and algebras. Sbornik. Mathematics, Tome 24 (1974) no. 2, pp. 287-297. http://geodesic.mathdoc.fr/item/SM_1974_24_2_a5/
[1] M. Goto, H. Wang, “Non discrete uniform subgroups of semisimple Lie groups”, Math. Ann., 198:4 (1972), 259–286 | DOI | MR | Zbl
[2] A. L. Onischik, “O gruppakh Li, tranzitivnykh na kompaktnykh mnogoobraziyakh, II”, Matem. sb., 74 (116) (1967), 398–416 | Zbl
[3] A. L. Onischik, “Razlozheniya reduktivnykh grupp Li”, Matem. sb., 80 (122) (1969), 553–599 | Zbl