On a~class of decompositions of semisimple Lie groups and algebras
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 24 (1974) no. 2, pp. 287-297
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $G$ be a semisimple Lie group, and $K$ a maximal compact subalgebra in $G$. In this paper we prove the existence of closed subgroups $G'\subset G$ such that $G'\cdot K=G$ and $G'\cap K=\{e\}$. Such subgroups are studied more explicitly in the case where $K$ is semisimple. Consideration of the infinitesimal analogue of the triple $(G,G',K)$ is basic.
Bibliography: 3 titles.
			
            
            
            
          
        
      @article{SM_1974_24_2_a5,
     author = {V. V. Gorbatsevich},
     title = {On a~class of decompositions of semisimple {Lie} groups and algebras},
     journal = {Sbornik. Mathematics},
     pages = {287--297},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {1974},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1974_24_2_a5/}
}
                      
                      
                    V. V. Gorbatsevich. On a~class of decompositions of semisimple Lie groups and algebras. Sbornik. Mathematics, Tome 24 (1974) no. 2, pp. 287-297. http://geodesic.mathdoc.fr/item/SM_1974_24_2_a5/
