On the Lam\'e point and its generalizations in a~normed space
Sbornik. Mathematics, Tome 24 (1974) no. 2, pp. 267-286

Voir la notice de l'article provenant de la source Math-Net.Ru

Existence and uniqueness conditions are investigated for an element $y^*$ which belongs to a subset $G$ of a normed linear space $E$ and minimizes the following functional over $G$: $$ F(y)=\int_A e(x-y)\,\mu(dx), $$ where $e(x)$ is a functional given on $E$ and bounded from below, $A$ is a Borel subset of $E$, and $\mu$ is a measure defined on the $\sigma$-algebra of the Borel subsets of $A$. Bibliography: 16 titles.
@article{SM_1974_24_2_a4,
     author = {A. L. Garkavi and V. A. Shmatkov},
     title = {On the {Lam\'e} point and its generalizations in a~normed space},
     journal = {Sbornik. Mathematics},
     pages = {267--286},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {1974},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1974_24_2_a4/}
}
TY  - JOUR
AU  - A. L. Garkavi
AU  - V. A. Shmatkov
TI  - On the Lam\'e point and its generalizations in a~normed space
JO  - Sbornik. Mathematics
PY  - 1974
SP  - 267
EP  - 286
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1974_24_2_a4/
LA  - en
ID  - SM_1974_24_2_a4
ER  - 
%0 Journal Article
%A A. L. Garkavi
%A V. A. Shmatkov
%T On the Lam\'e point and its generalizations in a~normed space
%J Sbornik. Mathematics
%D 1974
%P 267-286
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1974_24_2_a4/
%G en
%F SM_1974_24_2_a4
A. L. Garkavi; V. A. Shmatkov. On the Lam\'e point and its generalizations in a~normed space. Sbornik. Mathematics, Tome 24 (1974) no. 2, pp. 267-286. http://geodesic.mathdoc.fr/item/SM_1974_24_2_a4/