On the Lam\'e point and its generalizations in a~normed space
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 24 (1974) no. 2, pp. 267-286
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Existence and uniqueness conditions are investigated for an element $y^*$ which belongs to a subset $G$ of a normed linear space $E$ and minimizes the following functional over $G$:
$$
F(y)=\int_A e(x-y)\,\mu(dx),
$$
where $e(x)$ is a functional given on $E$ and bounded from below, $A$ is a Borel subset of $E$, and $\mu$ is a measure defined on the $\sigma$-algebra of the Borel subsets of $A$.
Bibliography: 16 titles.
			
            
            
            
          
        
      @article{SM_1974_24_2_a4,
     author = {A. L. Garkavi and V. A. Shmatkov},
     title = {On the {Lam\'e} point and its generalizations in a~normed space},
     journal = {Sbornik. Mathematics},
     pages = {267--286},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {1974},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1974_24_2_a4/}
}
                      
                      
                    A. L. Garkavi; V. A. Shmatkov. On the Lam\'e point and its generalizations in a~normed space. Sbornik. Mathematics, Tome 24 (1974) no. 2, pp. 267-286. http://geodesic.mathdoc.fr/item/SM_1974_24_2_a4/
