On the limits of indetermination and on the set of limit functions of series in the Walsh system
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 24 (1974) no. 2, pp. 257-265
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The main result of the article is the following
Theorem. {\it If a series with respect to the Walsh system is summable $(C,1)$ on a set $E$ of positive measure to a finite function $f(t)$, the subsequence $\{S_{2^n}(t)\}$ of partial sums of this series converges almost everywhere on $E$ to the function $f(t)$.}
Bibliography: 8 titles.
			
            
            
            
          
        
      @article{SM_1974_24_2_a3,
     author = {L. A. Shaginyan},
     title = {On the limits of indetermination and on the set of limit functions of series in the {Walsh} system},
     journal = {Sbornik. Mathematics},
     pages = {257--265},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {1974},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1974_24_2_a3/}
}
                      
                      
                    TY - JOUR AU - L. A. Shaginyan TI - On the limits of indetermination and on the set of limit functions of series in the Walsh system JO - Sbornik. Mathematics PY - 1974 SP - 257 EP - 265 VL - 24 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1974_24_2_a3/ LA - en ID - SM_1974_24_2_a3 ER -
L. A. Shaginyan. On the limits of indetermination and on the set of limit functions of series in the Walsh system. Sbornik. Mathematics, Tome 24 (1974) no. 2, pp. 257-265. http://geodesic.mathdoc.fr/item/SM_1974_24_2_a3/
