Convergence in the mean and almost everywhere of Fourier series in polynomials orthogonal on an interval
Sbornik. Mathematics, Tome 24 (1974) no. 2, pp. 223-256 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\sigma_p=\{p_n(t)\}_{n=0}^\infty$ be the system of polynomials orthonormal on $[-1,1]$ with weight $$ p(t)=H(t)(1-t)^\alpha(1+t)^\beta\prod_{\nu=1}^m|t-x_\nu|^{\gamma_\nu}, $$ where $-1, $\alpha,\beta,\gamma_\nu>-1$ ($\nu=1,\dots,m$), $H(t)>0$ on $[-1,1]$ and $\omega(H,\delta)\delta^{-1}\in L(0,2)$ ($\omega(H,\delta)$ is the modulus of continuity in $C(-1,\,1)$). Consider the class of functions $(qL)^r=\{f(t):q(t)f(t)\in L^r(-1,1)\}$, where $q(t)=(1-t)^A(1+t)^B\times\prod_{\nu=1}^m|t-x_\nu|^{\Gamma_\nu}.$ Let $S_n^{(p)}(f)=S_n^{(p)}(f,x)$ ($n=0,1,\dots$) denote the partial sums of the Fourier series of a function $f$ with repect to the system $\sigma_p$. In the paper, conditions are obtained on the exponents of the functions $p(t)$ and $q(t)$ and the exponent $r\in(1,\infty)$ that are necessary and sufficient for the boundedness in $(qL)^r$ of each of the operators $S_n^{(p)}(f,x)$ and $\sup_{n\geqslant0}\{|S_n^{(p)}(f,x)|\}$. Sufficient conditions for the convergence of the partial sums $S_n^{(p)}(f)$ to $f\in(qL)^r$ in the mean and almost everywhere in $(-1,\,1)$ are revealed as a consequence. It is proved that these conditions are best possible on the class $(qL)^r$ (for $\omega(H,\delta)\delta^{-1}\in L^2(0,2)$ in the case of convergence almost everywhere). Estimates of the polynomials $p_n(t)$ and necessary and sufficient conditions for their boundedness in the mean are also obtained. Bibliography: 26 titles.
@article{SM_1974_24_2_a2,
     author = {V. M. Badkov},
     title = {Convergence in the mean and almost everywhere of {Fourier} series in polynomials orthogonal on an interval},
     journal = {Sbornik. Mathematics},
     pages = {223--256},
     year = {1974},
     volume = {24},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1974_24_2_a2/}
}
TY  - JOUR
AU  - V. M. Badkov
TI  - Convergence in the mean and almost everywhere of Fourier series in polynomials orthogonal on an interval
JO  - Sbornik. Mathematics
PY  - 1974
SP  - 223
EP  - 256
VL  - 24
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1974_24_2_a2/
LA  - en
ID  - SM_1974_24_2_a2
ER  - 
%0 Journal Article
%A V. M. Badkov
%T Convergence in the mean and almost everywhere of Fourier series in polynomials orthogonal on an interval
%J Sbornik. Mathematics
%D 1974
%P 223-256
%V 24
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1974_24_2_a2/
%G en
%F SM_1974_24_2_a2
V. M. Badkov. Convergence in the mean and almost everywhere of Fourier series in polynomials orthogonal on an interval. Sbornik. Mathematics, Tome 24 (1974) no. 2, pp. 223-256. http://geodesic.mathdoc.fr/item/SM_1974_24_2_a2/

[1] G. Sege, Ortogonalnye mnogochleny, Fizmatgiz, Moskva, 1962

[2] N. N. Luzin, Integral i trigonometricheskii ryad, Moskva, 1916 | Zbl

[3] N. I. Chernykh, “O povedenii chastichnykh summ trigonometricheskikh ryadov Fure”, Uspekhi matem. nauk, XXIII:6(144) (1968), 3–50 | MR

[4] L. Carleson, “On convergence and growth of partial sums of Fourier series”, Acta Math., 116:1–2 (1966), 135–157 | DOI | MR | Zbl

[5] R. A. Hunt, “On convergence of Fourier series”, Proc. Conf. Orthogonal Expansions and their Continuous Analogues (Edwardsville, Ill.; 1967), Southern Illinois Univ. Press, Carbondalle, Ill., 1968, 235–255 | MR | Zbl

[6] J. E. Gilbert, “Maximal Theorems For some orthogonal series, I”, Trans. Amer. Math. Soc., 145 (1969), 495–516 | DOI | MR

[7] J. E. Gilbert, “Maximal theorems for some orthogonal series, II”, J. Math. Anal., Appl., 31 (1970), 340–368 | DOI | MR

[8] V. M. Badkov, “Ravnoskhodimost ryadov Fure po ortogonalnym mnogochlenam”, Matem. zametki, 5:3 (1969), 285–295 | MR | Zbl

[9] V. M. Badkov, “Priblizhenie funktsii chastnymi summami ryada Fure po mnogochlenam, ortogonalnym na otrezke”, Matem. zametki, 8:4 (1970), 431–441 | MR | Zbl

[10] H. Pollard, “The convergence almost everywhere of Legendre series”, Proc. Amer. Math. Soc., 35:2 (1972), 442–444 | DOI | MR | Zbl

[11] V. M. Badkov, “Skhodimost v srednem ryadov Fure po ortogonalnym mnogochlenam”, Matem. zametki, 14:2 (1973), 161–172 | MR | Zbl

[12] H. Pollard, “The mean convergence of orthogonal series, II”, Trans. Amer. Math. Soc., 63 (1948), 355–367 | DOI | MR | Zbl

[13] H. Pollard, “The mean convergence of orthogonal series, III”, Duke Math. J., 16 (1949), 189–191 | DOI | MR | Zbl

[14] G. M. Wing, “The mean convergence of orthogonal series”, Amer. J. Math., 72 (1950), 792–807 | DOI | MR

[15] B. Muckenhoupt, “Mean convergence of Jacobi series”, Proc. Amer. Math. Soc., 23:2 (1969), 306–310 | DOI | MR | Zbl

[16] R. Askey, “Mean convergence of orthogonal series and Lagrange interpolation”, Acta Math. Sci. Hung., 23:1–2 (1972), 71–85 | DOI | MR | Zbl

[17] L. A. Lyusternik, V. I. Sobolev, Elementy funktsionalnogo analiza, izd-vo «Nauka», Moskva, 1965 | MR

[18] V. M. Badkov, “Ob ogranichennosti v srednem ortonormirovannykh mnogochlenov”, Matem. zametki, 13:5 (1973), 759–770 | MR | Zbl

[19] G. Aleksich, Problemy skhodimosti ortogonalnykh ryadov, IL, Moskva, 1963 | MR

[20] F. Puchovsky, “On a class of generalized Jacobi's orthonormal polynomials”, Časopis pěsto. i mat., 97 (1972), 361–378 | MR | Zbl

[21] P. K. Suetin, “Nekotorye svoistva mnogochlenov, ortogonalnykh na segmente”, Sib. matem. zh., 10 (1969), 653–670 | MR | Zbl

[22] G. Freud, Orthogonale Polynome, Berlin, 1969 | MR

[23] V. L. Generozov, “O skhodimosti v $L_p$ razlozhenii po sobstvennym funktsiyam odnoi zadachi Shturma-Liuvillya”, Matem. zametki, 3:6 (1968), 683–691 | MR | Zbl

[24] A. Zigmund, Trigonometricheskie ryady, t. 1, izd-vo «Mir», Moskva, 1965 | MR

[25] B. L. Golinskii, “Printsip lokalizatsii i predelnye sootnosheniya dlya mnogochlenov, ortogonalnykh na edinichnoi okruzhnosti”, Izv. VUZov, matematika, 1968, no. 10, 42–53 | MR | Zbl

[26] Ya. L. Geronimus, Mnogochleny, ortogonalnye na okruzhnosti i na otrezke, Fizmatgiz, Moskva, 1958 | Zbl