Radicals of endomorphism rings of torsion-free Abelian groups
Sbornik. Mathematics, Tome 24 (1974) no. 2, pp. 209-222
Cet article a éte moissonné depuis la source Math-Net.Ru
This paper deals with questions related to the nil radical and the Jacobson radical of the endomorphism rings of torsion-free Abelian groups. The most complete results are obtained for groups of finite rank. A characterization is given for the Jacobson radical of the endomorphism ring of a torsion-free Abelian group of finite rank. The question of when the Jacobson radical of the endomorphism ring of a torsion-free Abelian group of finite rank is nilpotent (equal to zero) is completely settled. Bibliography: 7 titles.
@article{SM_1974_24_2_a1,
author = {P. A. Krylov},
title = {Radicals of endomorphism rings of torsion-free {Abelian} groups},
journal = {Sbornik. Mathematics},
pages = {209--222},
year = {1974},
volume = {24},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1974_24_2_a1/}
}
P. A. Krylov. Radicals of endomorphism rings of torsion-free Abelian groups. Sbornik. Mathematics, Tome 24 (1974) no. 2, pp. 209-222. http://geodesic.mathdoc.fr/item/SM_1974_24_2_a1/
[1] J. D. Reid, “On the ring of quasi-endomorphisms of a torsion-free group”, Topics in abelian groups, Chicago, 1963, 51–68 | MR
[2] R. A. Beaumont, R. S. Pierce, Torsion-free groups of rank two, Mem. Amer. Math. Soc., 38, Providence, 1961, 41 | MR | Zbl
[3] A. L. S. Corner, “Endomorphism ring of torsion-free abelian groups”, Proc. internat. Conf. Theory of Groups, Canberra, 1967, 59–69 | Zbl
[4] I. Lambek, Koltsa i moduli, izd-vo «Mir», Moskva, 1971 | MR
[5] L. Fuchs, Infinite abelian groups, vol. 1, Academic Press, New York–London, 1970 | MR | Zbl
[6] N. Dzhekobson, Stroenie kolets, IL, Moskva, 1961
[7] L. Fuchs, “Recent results and problems on abelian groups”, Topics in abelian groups, Chicago, 1963, 9–40 | MR