Asymptotic solutions of equations with complex characteristics
Sbornik. Mathematics, Tome 24 (1974) no. 2, pp. 159-207

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we give a method for constructing formal asymptotic solutions. This method uses in some sense “approximate solutions” of the equation of the characteristics and the transport equation. The construction of approximate solutions is brought abount by means of an analogue of the analytic Hamiltonian formalism in a complex phase space. Bibliography: 19 titles.
@article{SM_1974_24_2_a0,
     author = {V. V. Kucherenko},
     title = {Asymptotic solutions of equations with complex characteristics},
     journal = {Sbornik. Mathematics},
     pages = {159--207},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {1974},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1974_24_2_a0/}
}
TY  - JOUR
AU  - V. V. Kucherenko
TI  - Asymptotic solutions of equations with complex characteristics
JO  - Sbornik. Mathematics
PY  - 1974
SP  - 159
EP  - 207
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1974_24_2_a0/
LA  - en
ID  - SM_1974_24_2_a0
ER  - 
%0 Journal Article
%A V. V. Kucherenko
%T Asymptotic solutions of equations with complex characteristics
%J Sbornik. Mathematics
%D 1974
%P 159-207
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1974_24_2_a0/
%G en
%F SM_1974_24_2_a0
V. V. Kucherenko. Asymptotic solutions of equations with complex characteristics. Sbornik. Mathematics, Tome 24 (1974) no. 2, pp. 159-207. http://geodesic.mathdoc.fr/item/SM_1974_24_2_a0/