On free products of restricted Lie algebras
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 24 (1974) no. 1, pp. 49-78
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The results of A. I. Shirshov (RZh.Mat., 1962, № 8, A215) and the author (RZh.Mat., 1972, № 9, A237, 1973, № 7, A281) on free products of Lie algebras and on free restricted Lie algebras (i.e. Lie $p$-algebras) are carried over to free products of Lie $p$-algebras.
$p$-subalgebras of the free product of Lie $p$-algebras with amalgamated $p$-subalgebra are described in terms of generators and defining relations. It is shown that a $p$-subalgebra $F$ of the free product of Lie $p$-algebras $H_\alpha$ with amalgamated $p$-subalgebra $C$ is free if $F\cap C=0$ and $F\cap H_\alpha$ are free Lie $p$-algebras.
Bibliography: 13 titles.
			
            
            
            
          
        
      @article{SM_1974_24_1_a3,
     author = {G. P. Kykin},
     title = {On free products of restricted {Lie} algebras},
     journal = {Sbornik. Mathematics},
     pages = {49--78},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {1974},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1974_24_1_a3/}
}
                      
                      
                    G. P. Kykin. On free products of restricted Lie algebras. Sbornik. Mathematics, Tome 24 (1974) no. 1, pp. 49-78. http://geodesic.mathdoc.fr/item/SM_1974_24_1_a3/
