Classifying spaces for equivariant $K$-theory
Sbornik. Mathematics, Tome 24 (1974) no. 1, pp. 31-48
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper the methods of M. Karoubi (RZh.Mat., 1971, 2A466) are generalized to the case of equivariant $K$-theory. The sets of Fredholm operators in certain (Hilbert) spaces of representations of finite groups $G$ are described which are classifying spaces for equivariant $K$-functors. The results were announced in the paper RZh.Mat., 1972, 10A375. Bibliography: 16 titles.
@article{SM_1974_24_1_a2,
     author = {P. A. Kuchment and A. A. Pankov},
     title = {Classifying spaces for equivariant $K$-theory},
     journal = {Sbornik. Mathematics},
     pages = {31--48},
     year = {1974},
     volume = {24},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1974_24_1_a2/}
}
TY  - JOUR
AU  - P. A. Kuchment
AU  - A. A. Pankov
TI  - Classifying spaces for equivariant $K$-theory
JO  - Sbornik. Mathematics
PY  - 1974
SP  - 31
EP  - 48
VL  - 24
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1974_24_1_a2/
LA  - en
ID  - SM_1974_24_1_a2
ER  - 
%0 Journal Article
%A P. A. Kuchment
%A A. A. Pankov
%T Classifying spaces for equivariant $K$-theory
%J Sbornik. Mathematics
%D 1974
%P 31-48
%V 24
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1974_24_1_a2/
%G en
%F SM_1974_24_1_a2
P. A. Kuchment; A. A. Pankov. Classifying spaces for equivariant $K$-theory. Sbornik. Mathematics, Tome 24 (1974) no. 1, pp. 31-48. http://geodesic.mathdoc.fr/item/SM_1974_24_1_a2/

[1] M. Karoubi, “Algerbes de Clifford et $K$-theorie”, Ann. scient Ecole norm, super, 1 (1968), 161–270 | MR | Zbl

[2] M. Atya, Lektsii po $K$-teorii, izd-vo «Mir», Moskva, 1967 | MR

[3] M. Karoubi, “Espaces classifiant en $K$-theorie”, Trans. Amer. Math. Soc., 147:1 (1970), 75–115 | DOI | MR | Zbl

[4] P. A. Kuchment, A. A. Pankov, “O klassifitsiruyuschikh prostranstvakh dlya grupp $K_G^{p,q}$”, DAN SSSR, 204:5 (1972), 1049–1052 | MR | Zbl

[5] M. F. Atiyah, R. Bott, A. Shapiro, “Clifford modules”, Topology, 3 (1964), 3–38 | DOI | MR | Zbl

[6] D. Khyuzmoller, Rassloennye prostranstva, izd-vo «Mir», Moskva, 1970

[7] M. A. Naimark, Normirovannye koltsa, izd-vo «Nauka», Moskva, 1966 | MR

[8] G. Segal, “Equivariant contractibility of the general linear groups of Hilbert space”, Bull. London Math. Soc., 1:3 (1969), 329–331 | DOI | MR | Zbl

[9] Matumoto Tokao, “Equivariant $K$-theory and Fredholm operators”, J. Fac. Sci. Univ. Tokyo, Sec. I, A, 18:1 (1971), 109–125 | MR | Zbl

[10] M. Karoubi, “Foncteurs dérivés et $K$-theorie. Caractérization axiomatique de la $K$-theorie”, C. r. Acad. sci. Paris, 267:10 (1968), A345–A348 | MR

[11] S. G. Krein, Lineinye uravneniya v banakhovom prostranstve, izd-vo «Nauka», Moskva, 1971 | MR

[12] R. Bartle, L. M. Graves, “Mappings between function spaces”, Trans. Amer. Math. Soc., 72 (1952), 403–413 | DOI | MR

[13] E. Michael, “Cintinuous selections, I”, Ann. Math., 63:2 (1956), 361–382 | DOI | MR | Zbl

[14] G. Bredon, Equivariant cohomology theories, Berlin, 1967 | MR

[15] J. Milnor, “On spaces having the homotopy type of $CW$-complexes”, Trans. Amer. Math. Soc., 90 (1959), 272–280 | DOI | MR

[16] Dzh. Milnor, Teoriya Morsa, izd-vo «Mir», Moskva, 1965 | MR