On the Galois action on rational cohomology classes of type $(p,p)$ of Abelian varieties
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 23 (1974) no. 4, pp. 613-616
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We study the action of $\operatorname{Gal}(\overline k/k)$ on the ring $H^*(A,\mathbf A^f)$, where $A$ is an Abelian variety defined over the field $k$ of characteristic zero and $\mathbf A^f$ is the ring of finite adèles of the field of rational numbers. We prove that there exists a subgroup of finite index in $\operatorname{Gal}(\overline k/k)$ which acts as scalars on $R^p(A)\otimes_{\mathbf Q}\mathbf A^f$, where $R^p(A)\subset H^{2p}(A,\mathbf Q)$ is the space of rational cohomology classes of type $(p,p)$.
Bibliography: 6 titles.
			
            
            
            
          
        
      @article{SM_1974_23_4_a7,
     author = {M. V. Borovoi},
     title = {On the {Galois} action on rational cohomology classes of type $(p,p)$ of {Abelian} varieties},
     journal = {Sbornik. Mathematics},
     pages = {613--616},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {1974},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1974_23_4_a7/}
}
                      
                      
                    M. V. Borovoi. On the Galois action on rational cohomology classes of type $(p,p)$ of Abelian varieties. Sbornik. Mathematics, Tome 23 (1974) no. 4, pp. 613-616. http://geodesic.mathdoc.fr/item/SM_1974_23_4_a7/
