On the Galois action on rational cohomology classes of type $(p,p)$ of Abelian varieties
Sbornik. Mathematics, Tome 23 (1974) no. 4, pp. 613-616 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the action of $\operatorname{Gal}(\overline k/k)$ on the ring $H^*(A,\mathbf A^f)$, where $A$ is an Abelian variety defined over the field $k$ of characteristic zero and $\mathbf A^f$ is the ring of finite adèles of the field of rational numbers. We prove that there exists a subgroup of finite index in $\operatorname{Gal}(\overline k/k)$ which acts as scalars on $R^p(A)\otimes_{\mathbf Q}\mathbf A^f$, where $R^p(A)\subset H^{2p}(A,\mathbf Q)$ is the space of rational cohomology classes of type $(p,p)$. Bibliography: 6 titles.
@article{SM_1974_23_4_a7,
     author = {M. V. Borovoi},
     title = {On the {Galois} action on rational cohomology classes of type $(p,p)$ of {Abelian} varieties},
     journal = {Sbornik. Mathematics},
     pages = {613--616},
     year = {1974},
     volume = {23},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1974_23_4_a7/}
}
TY  - JOUR
AU  - M. V. Borovoi
TI  - On the Galois action on rational cohomology classes of type $(p,p)$ of Abelian varieties
JO  - Sbornik. Mathematics
PY  - 1974
SP  - 613
EP  - 616
VL  - 23
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1974_23_4_a7/
LA  - en
ID  - SM_1974_23_4_a7
ER  - 
%0 Journal Article
%A M. V. Borovoi
%T On the Galois action on rational cohomology classes of type $(p,p)$ of Abelian varieties
%J Sbornik. Mathematics
%D 1974
%P 613-616
%V 23
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1974_23_4_a7/
%G en
%F SM_1974_23_4_a7
M. V. Borovoi. On the Galois action on rational cohomology classes of type $(p,p)$ of Abelian varieties. Sbornik. Mathematics, Tome 23 (1974) no. 4, pp. 613-616. http://geodesic.mathdoc.fr/item/SM_1974_23_4_a7/

[1] I. I. Pyatetskii-Shapiro, “Vzaimootnosheniya mezhdu gipotezami Teita i Khodzha dlya abelevykh mnogoobrazii”, Matem. sb., 85(127) (1971), 610–620

[2] D. Mumford, “Families of abelian varieties”, Algebraic groups and discontinuous subgroups, Amer. Math. Soc., 1966, 347–352 | MR

[3] D. Mumford, “A note on paper: G. Shimura, Discontinuous groups and abelian varieties”, Math. Ann., 181:4 (1969), 345–351 | DOI | MR | Zbl

[4] G. Shimura, Y. Taniyama, “Complex multiplication of abelian varieties and its applications to number theory”, Publ. Math. Soc. Japan, no. 6, Tokyo, 1961 | MR

[5] G. Shimura, “On canonical models of arithmetic quotients of bounded symmetric domains”, Ann. Math., 91:1 (1970), 144–222 | DOI | MR | Zbl

[6] G. Shimura, “Moduli and fibre systems of abelian varieties”, Ann. Math., 83:2 (1966), 294–338 | DOI | MR | Zbl