Elliptic modules
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 23 (1974) no. 4, pp. 561-592
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The notion of elliptic module is introduced, generalizing the concept of an elliptic curve, and an analog of the theory of elliptic and modular curves is constructed. Here the role of the group $GL(2,Q)$ is played by $GL(2,k)$, where $k$ is a function field. A theorem on the coincidence of $L$-functions of modular curves and Jacquet–Langlands $L$-functions corresponding to $k$ is proved.
Bibliography: 14 titles.
			
            
            
            
          
        
      @article{SM_1974_23_4_a5,
     author = {V. G. Drinfeld},
     title = {Elliptic modules},
     journal = {Sbornik. Mathematics},
     pages = {561--592},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {1974},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1974_23_4_a5/}
}
                      
                      
                    V. G. Drinfeld. Elliptic modules. Sbornik. Mathematics, Tome 23 (1974) no. 4, pp. 561-592. http://geodesic.mathdoc.fr/item/SM_1974_23_4_a5/
