Elliptic modules
Sbornik. Mathematics, Tome 23 (1974) no. 4, pp. 561-592

Voir la notice de l'article provenant de la source Math-Net.Ru

The notion of elliptic module is introduced, generalizing the concept of an elliptic curve, and an analog of the theory of elliptic and modular curves is constructed. Here the role of the group $GL(2,Q)$ is played by $GL(2,k)$, where $k$ is a function field. A theorem on the coincidence of $L$-functions of modular curves and Jacquet–Langlands $L$-functions corresponding to $k$ is proved. Bibliography: 14 titles.
@article{SM_1974_23_4_a5,
     author = {V. G. Drinfeld},
     title = {Elliptic modules},
     journal = {Sbornik. Mathematics},
     pages = {561--592},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {1974},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1974_23_4_a5/}
}
TY  - JOUR
AU  - V. G. Drinfeld
TI  - Elliptic modules
JO  - Sbornik. Mathematics
PY  - 1974
SP  - 561
EP  - 592
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1974_23_4_a5/
LA  - en
ID  - SM_1974_23_4_a5
ER  - 
%0 Journal Article
%A V. G. Drinfeld
%T Elliptic modules
%J Sbornik. Mathematics
%D 1974
%P 561-592
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1974_23_4_a5/
%G en
%F SM_1974_23_4_a5
V. G. Drinfeld. Elliptic modules. Sbornik. Mathematics, Tome 23 (1974) no. 4, pp. 561-592. http://geodesic.mathdoc.fr/item/SM_1974_23_4_a5/