Elliptic modules
Sbornik. Mathematics, Tome 23 (1974) no. 4, pp. 561-592 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The notion of elliptic module is introduced, generalizing the concept of an elliptic curve, and an analog of the theory of elliptic and modular curves is constructed. Here the role of the group $GL(2,Q)$ is played by $GL(2,k)$, where $k$ is a function field. A theorem on the coincidence of $L$-functions of modular curves and Jacquet–Langlands $L$-functions corresponding to $k$ is proved. Bibliography: 14 titles.
@article{SM_1974_23_4_a5,
     author = {V. G. Drinfeld},
     title = {Elliptic modules},
     journal = {Sbornik. Mathematics},
     pages = {561--592},
     year = {1974},
     volume = {23},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1974_23_4_a5/}
}
TY  - JOUR
AU  - V. G. Drinfeld
TI  - Elliptic modules
JO  - Sbornik. Mathematics
PY  - 1974
SP  - 561
EP  - 592
VL  - 23
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1974_23_4_a5/
LA  - en
ID  - SM_1974_23_4_a5
ER  - 
%0 Journal Article
%A V. G. Drinfeld
%T Elliptic modules
%J Sbornik. Mathematics
%D 1974
%P 561-592
%V 23
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1974_23_4_a5/
%G en
%F SM_1974_23_4_a5
V. G. Drinfeld. Elliptic modules. Sbornik. Mathematics, Tome 23 (1974) no. 4, pp. 561-592. http://geodesic.mathdoc.fr/item/SM_1974_23_4_a5/

[1] I. M. Gelfand, M. I. Graev, I. I. Pyatetskii-Shapiro, “Teoriya predstavlenii i avtomorfnye funktsii”, Obobschennye funktsii, no. 6, izd-vo «Nauka», Moskva, 1966 | MR

[2] D. Mamford, Abelevy mnogoobraziya, izd-vo «Mir», Moskva, 1971

[3] D. Mamford, “Analiticheskaya konstruktsiya krivykh s vyrozhdennoi reduktsiei nad polnymi lokalnymi koltsami”, Uspekhi matem. nauk, XXVII:6 (168) (1972), 181–221 | MR

[4] I. I. Pyatetskii-Shapiro, “Indutsirovannye koltsa i reduktsiya polei modulyarnykh funktsii”, Izv. AN SSSR, seriya matem., 34 (1970), 532–546

[5] F. Bruhat, T. Tits, Groupes réductifs sur un corps local, Publ. Math. IHES, 41, Paris, 1972 | MR | Zbl

[6] P. Deligne, Formes modulaires et representations $l$-adiques, Lect. Notes Math., 179, Springer-Verlag, Berlin, 1971

[7] A. Fröhlich, Formal groups, Lect. Notes Math., 74, Springer-Verlag, Berlin, 1968 | MR

[8] H. Grauert, L. Gerritzen, “Die Azyklizität der affinoider Überdeckungen”, Global Analysis, Papers in Honour of Kodaira, University of Tokyo Press, Princeton University Press | MR

[9] O. Goldman, N. Iwahori, “The space of $p$-adic norms”, Acta math., 109:3–4 (1963), 137–177 | DOI | MR | Zbl

[10] H. Jacquet, R. P. Langlands, Automorphic forms on $GL(2)$, Lect. Notes Math., 114, Springer-Verlag, Berlin, 1970 | MR | Zbl

[11] R. Kiehl, “Der Endlichkeitssatz für eigentliche Abbildungen in der nichtarchimedischen Funktionentheorie”, Invent. Math., 2 (1967), 119–214 | MR

[12] R. Kiehl, “Theorem A und Theorem B in der nichtarchimedischen Funktionentheorie”, Invent. Math., 2 (1967), 256–273 | DOI | MR | Zbl

[13] J. Lubin, J. Tate, “Formal moduli for one-parameter formal Lie groups”, Bull. Soc. Math. France, 94 (1966), 49–60 | MR

[14] I. I. Piateckii-Shapiro, Zeta-functions of modular curves, preprint, institut prikladnoi matematiki, Moskva, 1972