On unconditional convergence in the space~$L_1$
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 23 (1974) no. 4, pp. 509-519
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The paper contains a proof of the following
Theorem. {\it Suppose $\sum_{k=1}^\infty f_k(x)$ converges unconditionally in $L_1[0,1]$. Then for any $\varepsilon>0$ there exists a set $E_\varepsilon\subset[0,1],$ $\mu E_\varepsilon>1-\varepsilon,$ such that $\sum_{k=1}^\infty f_k(x)$ converges unconditionally in $L_q(E_\varepsilon)$ for every $q2$.}
This result is obtained as a corollary of a more general theorem.
Bibliography: 2 titles.
			
            
            
            
          
        
      @article{SM_1974_23_4_a2,
     author = {B. S. Kashin},
     title = {On unconditional convergence in the space~$L_1$},
     journal = {Sbornik. Mathematics},
     pages = {509--519},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {1974},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1974_23_4_a2/}
}
                      
                      
                    B. S. Kashin. On unconditional convergence in the space~$L_1$. Sbornik. Mathematics, Tome 23 (1974) no. 4, pp. 509-519. http://geodesic.mathdoc.fr/item/SM_1974_23_4_a2/
