On the semiregularity of boundary points for nonlinear equations
Sbornik. Mathematics, Tome 23 (1974) no. 4, pp. 483-507

Voir la notice de l'article provenant de la source Math-Net.Ru

In the article the first boundary value problem is considered for boundedly inhomogeneous elliptic equations in a nonsmooth plane domain. It is established that an isolated point of the boundary can belong to one of four types: regular, semiregular from above or below (this means that the set of boundary values retained at the point has the form $[a,\infty)$ or $(-\infty,a]$ respectively) and nonregular. It is proved that the Dirichlet problem is equivalent to a certain problem with a free (on the set of semiregular points) boundary. Figures: 1. Bibliography: 10 titles.
@article{SM_1974_23_4_a1,
     author = {E. B. Frid},
     title = {On the semiregularity of boundary points for nonlinear equations},
     journal = {Sbornik. Mathematics},
     pages = {483--507},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {1974},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1974_23_4_a1/}
}
TY  - JOUR
AU  - E. B. Frid
TI  - On the semiregularity of boundary points for nonlinear equations
JO  - Sbornik. Mathematics
PY  - 1974
SP  - 483
EP  - 507
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1974_23_4_a1/
LA  - en
ID  - SM_1974_23_4_a1
ER  - 
%0 Journal Article
%A E. B. Frid
%T On the semiregularity of boundary points for nonlinear equations
%J Sbornik. Mathematics
%D 1974
%P 483-507
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1974_23_4_a1/
%G en
%F SM_1974_23_4_a1
E. B. Frid. On the semiregularity of boundary points for nonlinear equations. Sbornik. Mathematics, Tome 23 (1974) no. 4, pp. 483-507. http://geodesic.mathdoc.fr/item/SM_1974_23_4_a1/