On the semiregularity of boundary points for nonlinear equations
Sbornik. Mathematics, Tome 23 (1974) no. 4, pp. 483-507 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the article the first boundary value problem is considered for boundedly inhomogeneous elliptic equations in a nonsmooth plane domain. It is established that an isolated point of the boundary can belong to one of four types: regular, semiregular from above or below (this means that the set of boundary values retained at the point has the form $[a,\infty)$ or $(-\infty,a]$ respectively) and nonregular. It is proved that the Dirichlet problem is equivalent to a certain problem with a free (on the set of semiregular points) boundary. Figures: 1. Bibliography: 10 titles.
@article{SM_1974_23_4_a1,
     author = {E. B. Frid},
     title = {On the semiregularity of boundary points for nonlinear equations},
     journal = {Sbornik. Mathematics},
     pages = {483--507},
     year = {1974},
     volume = {23},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1974_23_4_a1/}
}
TY  - JOUR
AU  - E. B. Frid
TI  - On the semiregularity of boundary points for nonlinear equations
JO  - Sbornik. Mathematics
PY  - 1974
SP  - 483
EP  - 507
VL  - 23
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1974_23_4_a1/
LA  - en
ID  - SM_1974_23_4_a1
ER  - 
%0 Journal Article
%A E. B. Frid
%T On the semiregularity of boundary points for nonlinear equations
%J Sbornik. Mathematics
%D 1974
%P 483-507
%V 23
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1974_23_4_a1/
%G en
%F SM_1974_23_4_a1
E. B. Frid. On the semiregularity of boundary points for nonlinear equations. Sbornik. Mathematics, Tome 23 (1974) no. 4, pp. 483-507. http://geodesic.mathdoc.fr/item/SM_1974_23_4_a1/

[1] S. N. Bernshtein, “Ob uravneniyakh variatsionnogo ischisleniya”, Uspekhi matem. nauk, 1941, no. VIII, 32–74

[2] I. Ya. Bakelman, Geometricheskie metody resheniya ellipticheskikh uravnenii, izd-vo «Nauka», Moskva, 1965 | MR

[3] N. V. Krylov, “Ob odnom klasse nelineinykh uravnenii v prostranstve izmerimykh funktsii”, Matem. sb., 80 (122) (1960), 253–265 | MR

[4] N. V. Krylov, “Ogranichenno neodnorodnye neliinye ellipticheskie i parabolicheskie uravneniya na ploskosti”, Matem. sb., 82 (124) (1970), 99–110 | MR | Zbl

[5] N. V. Krylov, “Upravlenie markovskimi protsessami i prostranstva $W$”, Izv. AN SSSR, seriya matem., 35 (1971), 224–255 | MR | Zbl

[6] N. V. Krylov, Lektsii po teorii ellipticheskikh differentsialnykh uravnenii, izd-vo MGU, Moskva, 1972

[7] O. A. Ladyzhenskaya, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, izd-vo «Nauka», Moskva, 1964 | MR

[8] N. V. Krylov, “Diffuziya na ploskosti s otrazheniem”, Sib. matem. zh., 10:2 (1969), 344–372

[9] N. V. Krylov, “Ob odnoi otsenke iz teorii stokhasticheskikh integralov”, Teoriya veroyatn., 16:3 (1971), 446–457 | MR | Zbl

[10] B. I. Grigelionis, A. N. Shiryaev, “O zadache Stefana i optimalnykh pravilakh ostanovki markovskikh protsessov”, Teoriya veroyatn., 11:4 (1966), 612–631 | MR | Zbl