Stable and oscillating motions in nonautonomous dynamical systems. A~generalization of C.\,L.~Siegel's theorem to the nonautonomous case
Sbornik. Mathematics, Tome 23 (1974) no. 3, pp. 382-404

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we generalize to the nonautonomous case a theorem of C. L. Siegel on the reducibility of an analytic dynamical system to normal form in a neighborhood of an equilibrium point. In fact, under certain concrete assumptions with respect to the behavior of the system as $t\to\infty$, we show that in a neighborhood of an equilibrium we can reduce the system to a linear system by means of a change of coordinates that depends on the time $t$ and is analytic in the remaining variables. The results obtained are applicable to the problem of the stability of an equilibrium point. Bibliography: 16 titles.
@article{SM_1974_23_3_a3,
     author = {L. D. Pustyl'nikov},
     title = {Stable and oscillating motions in nonautonomous dynamical systems. {A~generalization} of {C.\,L.~Siegel's} theorem to the nonautonomous case},
     journal = {Sbornik. Mathematics},
     pages = {382--404},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {1974},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1974_23_3_a3/}
}
TY  - JOUR
AU  - L. D. Pustyl'nikov
TI  - Stable and oscillating motions in nonautonomous dynamical systems. A~generalization of C.\,L.~Siegel's theorem to the nonautonomous case
JO  - Sbornik. Mathematics
PY  - 1974
SP  - 382
EP  - 404
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1974_23_3_a3/
LA  - en
ID  - SM_1974_23_3_a3
ER  - 
%0 Journal Article
%A L. D. Pustyl'nikov
%T Stable and oscillating motions in nonautonomous dynamical systems. A~generalization of C.\,L.~Siegel's theorem to the nonautonomous case
%J Sbornik. Mathematics
%D 1974
%P 382-404
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1974_23_3_a3/
%G en
%F SM_1974_23_3_a3
L. D. Pustyl'nikov. Stable and oscillating motions in nonautonomous dynamical systems. A~generalization of C.\,L.~Siegel's theorem to the nonautonomous case. Sbornik. Mathematics, Tome 23 (1974) no. 3, pp. 382-404. http://geodesic.mathdoc.fr/item/SM_1974_23_3_a3/