Stable and oscillating motions in nonautonomous dynamical systems. A generalization of C. L. Siegel's theorem to the nonautonomous case
Sbornik. Mathematics, Tome 23 (1974) no. 3, pp. 382-404 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we generalize to the nonautonomous case a theorem of C. L. Siegel on the reducibility of an analytic dynamical system to normal form in a neighborhood of an equilibrium point. In fact, under certain concrete assumptions with respect to the behavior of the system as $t\to\infty$, we show that in a neighborhood of an equilibrium we can reduce the system to a linear system by means of a change of coordinates that depends on the time $t$ and is analytic in the remaining variables. The results obtained are applicable to the problem of the stability of an equilibrium point. Bibliography: 16 titles.
@article{SM_1974_23_3_a3,
     author = {L. D. Pustyl'nikov},
     title = {Stable and oscillating motions in nonautonomous dynamical systems. {A~generalization} of {C.} {L.~Siegel's} theorem to the nonautonomous case},
     journal = {Sbornik. Mathematics},
     pages = {382--404},
     year = {1974},
     volume = {23},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1974_23_3_a3/}
}
TY  - JOUR
AU  - L. D. Pustyl'nikov
TI  - Stable and oscillating motions in nonautonomous dynamical systems. A generalization of C. L. Siegel's theorem to the nonautonomous case
JO  - Sbornik. Mathematics
PY  - 1974
SP  - 382
EP  - 404
VL  - 23
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1974_23_3_a3/
LA  - en
ID  - SM_1974_23_3_a3
ER  - 
%0 Journal Article
%A L. D. Pustyl'nikov
%T Stable and oscillating motions in nonautonomous dynamical systems. A generalization of C. L. Siegel's theorem to the nonautonomous case
%J Sbornik. Mathematics
%D 1974
%P 382-404
%V 23
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1974_23_3_a3/
%G en
%F SM_1974_23_3_a3
L. D. Pustyl'nikov. Stable and oscillating motions in nonautonomous dynamical systems. A generalization of C. L. Siegel's theorem to the nonautonomous case. Sbornik. Mathematics, Tome 23 (1974) no. 3, pp. 382-404. http://geodesic.mathdoc.fr/item/SM_1974_23_3_a3/

[1] Schröder E., “Über iterierte Functionen”, Math. Ann., 3 (1871), 296–322 | DOI

[2] H. Poincare, These, Paris, 1879

[3] C. L. Siegel, “Iteration of Analytic Functions”, Ann. Math., 43 (1942), 607–612 | DOI | MR | Zbl

[4] K. L. Zigel, Lektsii po nebesnoi mekhanike, IL, Moskva, 1959

[5] K. L. Zigel, “O normalnoi forme analiticheskikh differentsialnykh uravnenii v okrestnosti ravnovesnogo resheniya”, Matematika, 5:2 (1961), 119–128

[6] S. Lefshets, Geometricheskaya teoriya differentsialnykh uravnenii, IL, Moskva, 1961

[7] Yu. Mozer, “O krivykh, invariantnykh pri otobrazheniyakh koltsa, sokhranyayuschikh ploschad”, Matematika, 6:5 (1962), 51–67

[8] Yu. Mozer, “Bystro skhodyaschiisya metod operatsii”, Uspekhi matem. nauk, XXIII:4 (142) (1968), 173–238 | MR

[9] V. V. Kostin, “Ob asimptoticheskoi ustoichivosti po Lyapunovu v nekotorykh kriticheskikh sluchayakh”, Dopovidi AN URSR, seriya A, fiziko-tekhn. i matem. nauki, 1967, no. 1, 21–25 | MR

[10] A. D. Bryuno, “Analiticheskaya forma differentsialnykh uravnenii”, Trudy Mosk. matem. ob-va, XXV (1971), 119–202

[11] A. D. Bryuno, “O lokalnykh invariantakh differentsialnykh uravnenii”, Matem. zametki, 14:4 (1973), 499–507 | Zbl

[12] Yu. N. Bibikov, “O suschestvovanii uslovno-periodicheskikh reshenii sistem differentsialnykh uravnenii”, Diff. ur., VII:8 (1971), 1347–1356 | MR

[13] Yu. N. Bibikov, “O privodimosti sistemy dvukh differentsialnykh uravnenii k normalnoi forme”, Diff. ur., VII:10 (1971), 1899–1902 | MR

[14] L. D. Pustylnikov, “Obobschenie dvukh teorem K. L. Zigelya na neavtonomnyi sluchai”, Uspekhi matem. nauk, XXVI:4 (160) (1971), 247–248 | MR

[15] L. D. Pustylnikov, “Ob ustoichivosti polutraekterii pri otobrazhenii ploskosti, sokhranyayuschem ploschad”, DAN SSSR, 202:1 (1972), 38–40 | MR

[16] L. D. Pustylnikov, “Suschestvovanie mnozhestva polozhitelnoi mery ostsilliruyuschikh dvizhenii v odnoi zadache dinamiki”, DAN SSSR, 202:2 (1972), 287–289 | MR