Stable and oscillating motions in nonautonomous dynamical systems. A~generalization of C.\,L.~Siegel's theorem to the nonautonomous case
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 23 (1974) no. 3, pp. 382-404
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this paper we generalize to the nonautonomous case a theorem of C. L. Siegel on the reducibility of an analytic dynamical system to normal form in a neighborhood of an equilibrium point. In fact, under certain concrete assumptions with respect to the behavior of the system as $t\to\infty$, we show that in a neighborhood of an equilibrium we can reduce the system to a linear system by means of a change of coordinates that depends on the time $t$ and is analytic in the remaining variables. The results obtained are applicable to the problem of the stability of an equilibrium point.
Bibliography: 16 titles.
			
            
            
            
          
        
      @article{SM_1974_23_3_a3,
     author = {L. D. Pustyl'nikov},
     title = {Stable and oscillating motions in nonautonomous dynamical systems. {A~generalization} of {C.\,L.~Siegel's} theorem to the nonautonomous case},
     journal = {Sbornik. Mathematics},
     pages = {382--404},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {1974},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1974_23_3_a3/}
}
                      
                      
                    TY - JOUR AU - L. D. Pustyl'nikov TI - Stable and oscillating motions in nonautonomous dynamical systems. A~generalization of C.\,L.~Siegel's theorem to the nonautonomous case JO - Sbornik. Mathematics PY - 1974 SP - 382 EP - 404 VL - 23 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1974_23_3_a3/ LA - en ID - SM_1974_23_3_a3 ER -
%0 Journal Article %A L. D. Pustyl'nikov %T Stable and oscillating motions in nonautonomous dynamical systems. A~generalization of C.\,L.~Siegel's theorem to the nonautonomous case %J Sbornik. Mathematics %D 1974 %P 382-404 %V 23 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_1974_23_3_a3/ %G en %F SM_1974_23_3_a3
L. D. Pustyl'nikov. Stable and oscillating motions in nonautonomous dynamical systems. A~generalization of C.\,L.~Siegel's theorem to the nonautonomous case. Sbornik. Mathematics, Tome 23 (1974) no. 3, pp. 382-404. http://geodesic.mathdoc.fr/item/SM_1974_23_3_a3/
