Saddle points of parabolic polynomials
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 23 (1974) no. 3, pp. 362-381
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $G(t,x)$ be the Green's function of a parabolic differential operator $\frac\partial{\partial t}+P\bigl(\frac1i\frac\partial{\partial x}\bigr)$. In a previous article of the authors (Mat. Sb. (N.S.) 91(133) (1973), 520–522) estimates for $G$ are obtained by means of a convex function $\nu_P$ invariantly defined by $P$, and the saddle points are distinguished under the assumption that $\nu_P$ is smooth. In the present paper the question of the existence of a finite number of saddle points is studied without assuming the smoothness of $\nu_P$; an example of a polynomial $P$ is constructed for which the function $\nu_P$ is not smooth. It is shown that for almost all polynomials $P$ the function $\nu_P$ is strictly convex almost everywhere.
Bibliography: 13 titles.
			
            
            
            
          
        
      @article{SM_1974_23_3_a2,
     author = {S. G. Gindikin and M. V. Fedoryuk},
     title = {Saddle points of parabolic polynomials},
     journal = {Sbornik. Mathematics},
     pages = {362--381},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {1974},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1974_23_3_a2/}
}
                      
                      
                    S. G. Gindikin; M. V. Fedoryuk. Saddle points of parabolic polynomials. Sbornik. Mathematics, Tome 23 (1974) no. 3, pp. 362-381. http://geodesic.mathdoc.fr/item/SM_1974_23_3_a2/
