Saddle points of parabolic polynomials
Sbornik. Mathematics, Tome 23 (1974) no. 3, pp. 362-381 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $G(t,x)$ be the Green's function of a parabolic differential operator $\frac\partial{\partial t}+P\bigl(\frac1i\frac\partial{\partial x}\bigr)$. In a previous article of the authors (Mat. Sb. (N.S.) 91(133) (1973), 520–522) estimates for $G$ are obtained by means of a convex function $\nu_P$ invariantly defined by $P$, and the saddle points are distinguished under the assumption that $\nu_P$ is smooth. In the present paper the question of the existence of a finite number of saddle points is studied without assuming the smoothness of $\nu_P$; an example of a polynomial $P$ is constructed for which the function $\nu_P$ is not smooth. It is shown that for almost all polynomials $P$ the function $\nu_P$ is strictly convex almost everywhere. Bibliography: 13 titles.
@article{SM_1974_23_3_a2,
     author = {S. G. Gindikin and M. V. Fedoryuk},
     title = {Saddle points of parabolic polynomials},
     journal = {Sbornik. Mathematics},
     pages = {362--381},
     year = {1974},
     volume = {23},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1974_23_3_a2/}
}
TY  - JOUR
AU  - S. G. Gindikin
AU  - M. V. Fedoryuk
TI  - Saddle points of parabolic polynomials
JO  - Sbornik. Mathematics
PY  - 1974
SP  - 362
EP  - 381
VL  - 23
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1974_23_3_a2/
LA  - en
ID  - SM_1974_23_3_a2
ER  - 
%0 Journal Article
%A S. G. Gindikin
%A M. V. Fedoryuk
%T Saddle points of parabolic polynomials
%J Sbornik. Mathematics
%D 1974
%P 362-381
%V 23
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1974_23_3_a2/
%G en
%F SM_1974_23_3_a2
S. G. Gindikin; M. V. Fedoryuk. Saddle points of parabolic polynomials. Sbornik. Mathematics, Tome 23 (1974) no. 3, pp. 362-381. http://geodesic.mathdoc.fr/item/SM_1974_23_3_a2/

[1] M. V. Fedoryuk, “Asimptotika funktsii Grina pri $t\to0$, $|x|\to\infty$ dlya korrektnykh po Petrovskomu uravnenii s postoyannymi koeffitsientami i klassy korrektnosti resheniya zadachi Koshi”, Matem. sb., 62 (104) (1961), 397–468

[2] M. A. Evgrafov, M. M. Postnikov, “Asimptotika funktsii Grina parabolicheskikh i ellipticheskikh uravnenii s postoyannymi koeffitsientami”, Matem. sb., 82 (124) (1970), 3–29 | MR | Zbl

[3] S. G. Gindikin, M. V. Fedoryuk, “Asimptotika fundamentalnogo resheniya parabolicheskogo uravneniya s postoyannymi koeffitsientami”, Uspekhi matem. nauk, XXVIII:1 (169) (1973), 235–236 | MR

[4] S. G. Gindikin, M. V. Fedoryuk, “Asimptotika fundamentalnogo resheniya dlya parabolicheskogo po Petrovskomu differentsialnogo uravneniya s postoyannymi koeffitsientami”, Matem. sb., 91 (133) (1973), 500–522 | MR | Zbl

[5] K. Shevalle, Teoriya grupp Li, t. III, IL, Moskva, 1958

[6] E. B. Vinberg, A. A. Onischik, Seminar po algebraicheskim gruppam i gruppam Li, izd-vo MGU, Moskva, 1969

[7] V. P. Maslov, M. V. Fedoryuk, “Kanonicheskii operator (veschestvennyi sluchai)”, Itogi nauki. Sovremennye problemy matematiki, 1, VINITI, Moskva, 1973, 85–167

[8] Dzh. Milnor, Osobye tochki kompleksnykh giperpoverkhnostei, izd-vo «Mir», Moskva, 1971 | MR

[9] I. R. Shafarevich, Osnovy algebraicheskoi geometrii, izd-vo «Nauka», Moskva, 1972 | MR

[10] Van der Varden, Sovremennaya algebra, t. II, Gostekhizdat, Moskva–Leningrad, 1947

[11] E. A. Gorin, “Ob asimptoticheskikh svoistvakh mnogochlenov i algebraicheskikh funktsii ot neskolkikh peremennykh”, Uspekhi matem. nauk, XVI:1 (97) (1961), 91–118 | MR

[12] A. Borel, Lineinye algebraicheskie gruppy, izd-vo «Mir», Moskva, 1972 | MR

[13] D. Mumford, Introduction to algebraic geometry, Harvard lecture notes, 1967