Finite-dimensional algebras of integral $p$-adic representations of finite groups
Sbornik. Mathematics, Tome 23 (1974) no. 3, pp. 336-361 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $F$ be a inite extension of the field of rational $p$-adic numbers $Q_p$, $R$ he ring of integers of $F$, $G$ a finite group, $a(RG)$ the ring of $R$-representations of $G$ and $A(RG)=Q\otimes_Za(RG)$ ($Z$ is the ring of rational integers and $Q$ the rational number field). We study the algebra $A(RG)$ in the case where the number $n(RG)$ of indecomposable $R$-representations of $G$ is finite. In particular, for $G$ a $p$-group and $n(RG)<\infty$ we find a list of the tensor products of indecomposable $R$-representations of $G$ and obtain a description of the radical $N$ of $A(RG)$ and of the quotient algebra $A(RG)/N$. It turns out that in this case we always have $N^2=0$. Bibliography: 26 titles.
@article{SM_1974_23_3_a1,
     author = {P. M. Gudivok and S. F. Goncharova and V. P. Rud'ko},
     title = {Finite-dimensional algebras of integral $p$-adic representations of finite groups},
     journal = {Sbornik. Mathematics},
     pages = {336--361},
     year = {1974},
     volume = {23},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1974_23_3_a1/}
}
TY  - JOUR
AU  - P. M. Gudivok
AU  - S. F. Goncharova
AU  - V. P. Rud'ko
TI  - Finite-dimensional algebras of integral $p$-adic representations of finite groups
JO  - Sbornik. Mathematics
PY  - 1974
SP  - 336
EP  - 361
VL  - 23
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1974_23_3_a1/
LA  - en
ID  - SM_1974_23_3_a1
ER  - 
%0 Journal Article
%A P. M. Gudivok
%A S. F. Goncharova
%A V. P. Rud'ko
%T Finite-dimensional algebras of integral $p$-adic representations of finite groups
%J Sbornik. Mathematics
%D 1974
%P 336-361
%V 23
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1974_23_3_a1/
%G en
%F SM_1974_23_3_a1
P. M. Gudivok; S. F. Goncharova; V. P. Rud'ko. Finite-dimensional algebras of integral $p$-adic representations of finite groups. Sbornik. Mathematics, Tome 23 (1974) no. 3, pp. 336-361. http://geodesic.mathdoc.fr/item/SM_1974_23_3_a1/

[1] P. M. Gudivok, S. F. Goncharova, V. P. Rudko, “Ob algebre tselochislennykh predstavlenii konechnoi gruppy”, DAN SSSR, 198:3 (1971), 509–512 | MR | Zbl

[2] I. Reiner, “Nilpotent elements in rings of integral representations”, Proc. Amer. Math. Soc., 17:1 (1966), 270–274 | DOI | MR | Zbl

[3] I. Reiner, “Integral representation algebras”, Trans. Amer. Math. Soc., 124:1 (1966), 111–121 | DOI | MR | Zbl

[4] J. Zemanek, “On the semisimplicity of integral representation rings”, Bull. Amer. Math. Soc., 76:4 (1970), 778–779 | DOI | MR | Zbl

[5] P. M. Gudivok, V. P. Rudko, “Ob algebrakh modulyarnykh i tselochislennykh predstavlenii konechnykh grupp”, Izv. AN SSSR, seriya matem., 37 (1973), 963–987 | MR | Zbl

[6] Z. I. Borevich, D. K. Faddeev, “Teoriya gomologii v gruppakh, II”, Vestnik LGU, seriya matem., 1959, no. 7, 65–74

[7] S. D. Berman, P. M. Gudivok, “O tselochislennykh predstavleniyakh konechnykh grupp”, DAN SSSR, 145:6 (1962), 1119–1201 | MR

[8] A. Heller, I. Reiner, “On groups with finitely many indecomposable integral representations”, Bull. Amer. Math. Soc., 68:3 (1962), 210–212 | DOI | MR | Zbl

[9] P. M. Gudivok, “Predstavleniya konechnykh grupp nad chislovymi koltsami”, Izv. AN SSSR, seriya matem., 31 (1967), 799–834 | MR | Zbl

[10] H. Jacobinski, “Sur les ordres commutatifs avec un nombre fini de reseaux indecomposables”, Acta math., 118 (1967), 1–31 | DOI | MR | Zbl

[11] J. A. Green, “The modular representation algebra of a finite group”, Illinois J. Math., 6:4 (1962), 607–619 | MR | Zbl

[12] M. F. O'Reilly, “On the semisimplicity of the modular representation algebra of a finite group”, Illinois J. Math., 9:2 (1965), 261–276 | MR

[13] I. Reiner, “The integral representation ring of a finite group”, Michigan Math. J., 12:1 (1965), 11–22 | DOI | MR | Zbl

[14] V. P. Rudko, “Pro tenzornu algebru tsilochiselnikh zobrazhen tsiklichnoi grupi poryadku $p^2$”, Dopovidi AN URSR, 1967, no. 1, 35–39 | MR

[15] V. S. Drobotenko, “Algebra modulyarnikh predstavlen tsiklichnoi $p$-grupi”, Dopovidi AN URSR, 1965, no. 7, 827–830 | MR | Zbl

[16] V. P. Rudko, “O ratsionalnoi tenzornoi algebre modulyarnykh predstavlenii tsiklicheskoi $p$-gruppy”, Ukr. matem. zh., 20:6 (1968), 841–845 | MR

[17] A. Jones, “Integral representations of the direct product of groups”, Canad. J. Math., 15 (1963), 625–630 | MR | Zbl

[18] R. G. Swan, “Induced representations and projective modules”, Ann. Math., 71:3 (1960), 552–578 | DOI | MR | Zbl

[19] M. Hikari, “On representations of direct products of finite solvable groups”, Osaka J. Math., 8:2 (1971), 299–307 | MR | Zbl

[20] S. D. Berman, “Predstavleniya konechnykh grupp nad proizvolnym polem i nad koltsom tselykh chisel”, Izv. AN SSSR, seriya matem., 30 (1966), 69–132 | MR | Zbl

[21] A. V. Rukolaine, “O stepenyakh modulyarnykh predstavlenii $p$-razreshimykh grupp”, Vestnik LGU, 1962, no. 19, 41–48 | MR | Zbl

[22] R. G. Swan, “The Grothendieck ring of a finite group”, Topology, 2 (1963), 85–110 | DOI | MR | Zbl

[23] Z. I. Borevich, I. R. Shafarevich, Teoriya chisel, izd-vo «Nauka», Moskva, 1964 | MR

[24] P. M. Gudivok, E. Ya. Pogorilyak, “O teoreme Krullya-Shmidta dlya predstavlenii grupp nad koltsom $P$-tselykh chisel”, Matem. zametki, 7:1 (1970), 125–135 | MR | Zbl

[25] I. Reiner, “Relations between integral and modular representations”, Michigan Math. J., 13 (1966), 357–372 | DOI | MR | Zbl

[26] N. Burbaki, Algebra (moduli, koltsa, formy), izd-vo «Nauka», Moskva, 1966 | MR