Finite-dimensional algebras of integral $p$-adic representations of finite groups
Sbornik. Mathematics, Tome 23 (1974) no. 3, pp. 336-361

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $F$ be a inite extension of the field of rational $p$-adic numbers $Q_p$, $R$ he ring of integers of $F$, $G$ a finite group, $a(RG)$ the ring of $R$-representations of $G$ and $A(RG)=Q\otimes_Za(RG)$ ($Z$ is the ring of rational integers and $Q$ the rational number field). We study the algebra $A(RG)$ in the case where the number $n(RG)$ of indecomposable $R$-representations of $G$ is finite. In particular, for $G$$p$-group and $n(RG)\infty$ we find a list of the tensor products of indecomposable $R$-representations of $G$ and obtain a description of the radical $N$ of $A(RG)$ and of the quotient algebra $A(RG)/N$. It turns out that in this case we always have $N^2=0$. Bibliography: 26 titles.
@article{SM_1974_23_3_a1,
     author = {P. M. Gudivok and S. F. Goncharova and V. P. Rud'ko},
     title = {Finite-dimensional algebras of integral $p$-adic representations of finite groups},
     journal = {Sbornik. Mathematics},
     pages = {336--361},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {1974},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1974_23_3_a1/}
}
TY  - JOUR
AU  - P. M. Gudivok
AU  - S. F. Goncharova
AU  - V. P. Rud'ko
TI  - Finite-dimensional algebras of integral $p$-adic representations of finite groups
JO  - Sbornik. Mathematics
PY  - 1974
SP  - 336
EP  - 361
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1974_23_3_a1/
LA  - en
ID  - SM_1974_23_3_a1
ER  - 
%0 Journal Article
%A P. M. Gudivok
%A S. F. Goncharova
%A V. P. Rud'ko
%T Finite-dimensional algebras of integral $p$-adic representations of finite groups
%J Sbornik. Mathematics
%D 1974
%P 336-361
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1974_23_3_a1/
%G en
%F SM_1974_23_3_a1
P. M. Gudivok; S. F. Goncharova; V. P. Rud'ko. Finite-dimensional algebras of integral $p$-adic representations of finite groups. Sbornik. Mathematics, Tome 23 (1974) no. 3, pp. 336-361. http://geodesic.mathdoc.fr/item/SM_1974_23_3_a1/