Some theorems on the metrization of Abelian groups
Sbornik. Mathematics, Tome 23 (1974) no. 3, pp. 319-335 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The results of this paper are concerned with the construction of a metrizable topology $\nu$ on an infinite Abelian group $G$, compatible with the group structure, such that the completion $\nu G$ of the group $(G,\nu)$ is arcwise connected and locally arcwise connected. As an application of these results, we describe a method by which any metrizable Abelian group of weight $\mathbf m$ can be imbedded as a closed subgroup of an arcwise connected and locally arcwise connected metrizable Abelian group of weight $\max(\mathbf m,\aleph_0)$. Bibliography: 12 titles.
@article{SM_1974_23_3_a0,
     author = {V. K. Bel'nov},
     title = {Some theorems on the metrization of {Abelian} groups},
     journal = {Sbornik. Mathematics},
     pages = {319--335},
     year = {1974},
     volume = {23},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1974_23_3_a0/}
}
TY  - JOUR
AU  - V. K. Bel'nov
TI  - Some theorems on the metrization of Abelian groups
JO  - Sbornik. Mathematics
PY  - 1974
SP  - 319
EP  - 335
VL  - 23
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1974_23_3_a0/
LA  - en
ID  - SM_1974_23_3_a0
ER  - 
%0 Journal Article
%A V. K. Bel'nov
%T Some theorems on the metrization of Abelian groups
%J Sbornik. Mathematics
%D 1974
%P 319-335
%V 23
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1974_23_3_a0/
%G en
%F SM_1974_23_3_a0
V. K. Bel'nov. Some theorems on the metrization of Abelian groups. Sbornik. Mathematics, Tome 23 (1974) no. 3, pp. 319-335. http://geodesic.mathdoc.fr/item/SM_1974_23_3_a0/

[1] A. Kertesz, T. Szele, “On the existence of non-discrete topologies in infinite abelian groups”, Publ. math., 3:1–2 (1953), 187–189 | MR

[2] A. G. Kurosh, Teoriya grupp, izd-vo «Nauka», Moskva, 1967 | MR

[3] W. R. Scott, “The number of subgroups of given index in nondenumerable abelian groups”, Proc. Amer. Math. Soc., 5 (1954), 19–22 | DOI | MR | Zbl

[4] M. I. Graev, “Teoriya topologicheskikh grupp, I”, Uspekhi matem. nauk, V:2(36) (1950), 3–56 | MR

[5] L. S. Pontryagin, Nepreryvnye gruppy, Gostekhizdat, Moskva, 1954 | MR

[6] R. Baer, “Abelian groups that are direct summands of every containing abelian group”, Bull. Amer. Math. Soc., 46 (1940), 800–806 | DOI | MR | Zbl

[7] V. K. Belnov, “O svobodnykh abelevykh metrizuemykh gruppakh”, DAN SSSR, 202:4 (1972), 743–746 | MR

[8] V. K. Belnov, “Nekotorye teoremy o svobodnykh abelevykh metrizuemykh gruppakh”, Sib. matem. zh., 13:6 (1972), 1213–1228 | MR

[9] N. Burbaki, Obschaya topologiya. Topologicheskie gruppy, chisla i svyazannye s nimi gruppy i prostranstva, izd-vo «Nauka», Moskva, 1969 | MR

[10] E. Hewitt, K. A. Ross, Abstract harmonic analysis, vol. 1, Springer-Verlag, Berlin, 1963 | Zbl

[11] K. Kuratovskii, Topologiya, t. 2, izd-vo «Mir», Moskva, 1969 | MR

[12] R. F. Arens, J. Eells, “On embedding uniform and topological spaces”, Pacific J. Math., 6:3 (1956), 397–403 | MR | Zbl