Some theorems on the metrization of Abelian groups
Sbornik. Mathematics, Tome 23 (1974) no. 3, pp. 319-335

Voir la notice de l'article provenant de la source Math-Net.Ru

The results of this paper are concerned with the construction of a metrizable topology $\nu$ on an infinite Abelian group $G$, compatible with the group structure, such that the completion $\nu G$ of the group $(G,\nu)$ is arcwise connected and locally arcwise connected. As an application of these results, we describe a method by which any metrizable Abelian group of weight $\mathbf m$ can be imbedded as a closed subgroup of an arcwise connected and locally arcwise connected metrizable Abelian group of weight $\max(\mathbf m,\aleph_0)$. Bibliography: 12 titles.
@article{SM_1974_23_3_a0,
     author = {V. K. Bel'nov},
     title = {Some theorems on the metrization of {Abelian} groups},
     journal = {Sbornik. Mathematics},
     pages = {319--335},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {1974},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1974_23_3_a0/}
}
TY  - JOUR
AU  - V. K. Bel'nov
TI  - Some theorems on the metrization of Abelian groups
JO  - Sbornik. Mathematics
PY  - 1974
SP  - 319
EP  - 335
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1974_23_3_a0/
LA  - en
ID  - SM_1974_23_3_a0
ER  - 
%0 Journal Article
%A V. K. Bel'nov
%T Some theorems on the metrization of Abelian groups
%J Sbornik. Mathematics
%D 1974
%P 319-335
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1974_23_3_a0/
%G en
%F SM_1974_23_3_a0
V. K. Bel'nov. Some theorems on the metrization of Abelian groups. Sbornik. Mathematics, Tome 23 (1974) no. 3, pp. 319-335. http://geodesic.mathdoc.fr/item/SM_1974_23_3_a0/