Some questions in the theory of nonlinear elliptic and parabolic equations
Sbornik. Mathematics, Tome 23 (1974) no. 2, pp. 287-318
Voir la notice de l'article provenant de la source Math-Net.Ru
For the nonlinear parabolic equation of order $m$
\begin{equation}
\frac{\partial u}{\partial t}=-A(D)u+f(u,D^\gamma u),\qquad|\gamma|\leqslant m,
\end{equation}
where the nonlinear part $f$ depends analytically on its arguments, in the case of periodic boundary conditions we prove a theorem about the unique solvability in a certain space of generalized functions if the initial condition is a eneralized function from the same class. We prove an analogous theorem for nonlinear elliptic equations.
We construct an asymptotic expansion (as $t\to\infty$) for the $\xi$th Fourier coefficient $v(t,\xi)$ of the solution $u(t,x)$ of a parabolic equation of the form (1).
Bibliography: 3 titles.
@article{SM_1974_23_2_a7,
author = {M. I. Vishik and A. V. Fursikov},
title = {Some questions in the theory of nonlinear elliptic and parabolic equations},
journal = {Sbornik. Mathematics},
pages = {287--318},
publisher = {mathdoc},
volume = {23},
number = {2},
year = {1974},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1974_23_2_a7/}
}
M. I. Vishik; A. V. Fursikov. Some questions in the theory of nonlinear elliptic and parabolic equations. Sbornik. Mathematics, Tome 23 (1974) no. 2, pp. 287-318. http://geodesic.mathdoc.fr/item/SM_1974_23_2_a7/